Skip to main content
Log in

Selected Methodological Issues in Meiotic Mapping of Obesity Genes in Humans: Issues of Power and Efficiency

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

This paper focuses on methods for mapping novel obesity genes in humans via meiotic mapping techniques. By novel we mean genes that are as yet unidentified as playing a role in obesity. We begin by presenting a discussion of why we believe it is important to seek out novel obesity genes and, in particular, novel genes of small effect. In light of the arguably Herculean task of finding genes of small effect with conventional gene mapping methods, we discuss alternative methods and procedures that may enhance our ability to map novel obesity genes of small effect. Many of these methods have been discussed previously in the literature and are summarized here. These include reconceptualizing power in the context of genomewide scans, multivariate linkage approaches, the use of phenotypically extreme subjects, and the use of large sibships. These are discussed in the context of linkage studies. Association studies and disequilibrium mapping are also discussed, and again, issues involving the use of extreme phenotypes and multiple testing are included. We also provide a brief discussion of DNA pooling and transmission disequilibrium tests for quantitative traits. Finally, we advocate data pooling techniques (e.g., meta-analysis) to enhance the power and efficiency of the entire field of the genetics of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Allison, D. B. (1996). The use of discordant sibling pairs for finding genetic loci linked to obesity: Practical considerations. Int. J. Obes. 20:553–560.

    Google Scholar 

  • Allison, D. B. (1997). Transmission disequilibrium tests for quantitative traits. Am. J. Hum. Genet. 60:676–690.

    Google Scholar 

  • Allison, D. B., and Beasley, M. (1997). A method and computer program for controlling the family-wise alpha rate in gene association studies involving multiple phenotypes. Gen. Epid. (in press).

  • Allison, D. B., and Faith, M. S. (1997). The concept of genome-wide power and its potential use in designing linkage studies with polygenic traits (submitted for publication).

  • Allison, D. B., and Heo, M. (1997). Meta-analysis of linkage studies under “worst-case” conditions: A demonstration using the human Ob gene region (submitted for publication).

  • Allison, D. B., Reddy, N., and Rao, D. C. (1995). Using data from consanguineous mating to assess non-additivity in genetic factors influencing adiposity. Obes. Res. 3(Suppl. 3):387S (abstract).

    Google Scholar 

  • Allison, D. B., Faith, M. S., and Nathan, J. S. (1996a). Risch's lambda values for human obesity. Int. J. Obes. 20:990–999.

    Google Scholar 

  • Allison, D. B., Kaprio, J., Korkeila, M., Koskenvuo, M., Neale, M. C., and Hayakawa, K. (1996b). The heritability of BMI among an international sample of monozygotic twins reared apart. Int. J. Obes. 20:501–506.

    Google Scholar 

  • Allison, D. B., Packer-Munter, W., Pietrobelli, A., Alfonso, V. C., and Faith, M. S. (1997a). Obesity and developmental disabilities: Pathogenesis and treatment. J. Phys. Dev. Disabil. (in press).

  • Allison, D. B., Allison, R. L., Faith, M. S., Paultre, F., and Pi-Sunyer, F. X. (1997b). Power and money: Methods for minimizing study costs while maximizing statistical power. Psychol. Methods 2:20–33.

    Google Scholar 

  • Allison, D. B., Schork, N. J., Wong, S., and Elston, R. C. (1997c). More extreme subjects are not always more powerful when mapping genes for polygenic quantitative traits (submitted for publication).

  • Amos, C. I. (1994). Robust variance-components approach for assessing genetic linkage in pedigrees. Am. J. Hum. Genet. 54:535–543.

    Google Scholar 

  • Amos, C. I., and Elston, R. C. (1989). Robust methods for the detection of genetic linkage for quantitative data from pedigrees. Genet. Epidemiol. 6:349–360.

    Google Scholar 

  • Amos, C. I., and Laing, A. E. (1993). A comparison of univariate and multivariate tests for genetic linkage. Genet. Epidemiol. 10:671–676.

    Google Scholar 

  • Amos, C. I., Elston, R. C., Wilson, A. F., and Balley-Wilson, J. E. (1989). A more powerful robust sib-pair test of linkage for quantitative traits. Genet. Epidemiol. 6:435–449.

    Google Scholar 

  • Amos, C. I., Elston, R. C., Bonney, G. E., Keats, B. J. B., and Berenson, G. S. (1990). A multivariate approach for detecting linkage, with application to a pedigree with adverse lipoprotein phenotype. Am. J. Hum. Genet. 47:247–254.

    Google Scholar 

  • Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, John Wiley & Sons, New York.

    Google Scholar 

  • Baily, K. D. (1973). Monothetic and polythetic typologies and their relation to conceptualization, measurement and scaling. Am. Sociol. Rev. 38:18–33.

    Google Scholar 

  • Blangero, J., Williams-Blangero, S., and Mahaney, M. C. (1993). Multivariate genetic analysis of APO Al concentration and HDL subtractions: Evidence for major locus pleiotropy. Genet. Epidemiol. 10:617–622.

    Google Scholar 

  • Boomsma, D. I. (1996). Using multivariate genetic modeling to detect pleiotropic quantitative trait loci. Behav. Genet. 26:161–166.

    Google Scholar 

  • Borecki, I., Rice, T., Pérusse, L., Bouchard, C., and Rao, D. C. (1994). An exploratory investigation of genetic linkage with body composition and fatness phenotypes: The Quebec Family Study. Obes. Res. 2:213–219.

    Google Scholar 

  • Briscoe, D., Stephens, J. C., and O'Brien, S. J. (1994). Linkage disequilibrium in admixed populations: Applications in gene mapping. J. Hered. 85:59–63.

    Google Scholar 

  • Cardon, L. R., and Fulker, D. W. (1994). The power of interval mapping of quantitative trait loci, using selected sib pairs. Am. J. Hum. Genet. 55:825–833.

    Google Scholar 

  • Cardon, L. R., Fulker, D. W., and Cherny, S. S. (1995). Linkage analysis of a common oligogenic disease using selected sib pairs. Genet. Epidemiol. 12:741–746.

    Google Scholar 

  • Carey, G., and Williamson, J. A. (1991). Linkage analysis of quantitative traits: Increased power by using selected samples. Am. J. Hum. Genet. 49:786–796.

    Google Scholar 

  • Carmi, R., Rokhlina, T., Kwitek-Black, A. E., Elbedour, K., Nishimura, D., Stone, E. M., and Sheffield, V. C. (1995). Use of a DNA pooling strategy to identify a human obesity syndrome locus on chromosome 15. Hum. Mol. Genet. 4:9–13.

    Google Scholar 

  • Clement, K., Vaisse, C., Manning, B. S., Basdevant, A., Guy-Grand, B., Ruiz, J., Silver, K. D., Shuldiner, A. R., Froegel, P., and Strosberg, A. D. (1995). Genetic variation in the beta 3-adrenergic receptor and increased capacity to gain weight in patients with morbid obesity. N. Engl. J. Med. 333:352–354.

    Google Scholar 

  • Clement, K., Garner, C., Hager, J., Philippi, A., LeDuc, C., Carey, A., Harris, T. J., Jury, C., Cardon, L. R., Basdevant, A., Demenais, F., Guy-Grand, B., North, M., and Froguel, P. (1996). Indication for linkage of the human OB gene region with extreme obesity. Diabetes 45:687–690.

    Google Scholar 

  • Cloninger, C. R. (1994). Turning point in the design of linkage studies of schizophrenia. Am. J. Med. Genet. 54:83–92.

    Google Scholar 

  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Darvasi, A., and Soller, M. (1994). Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 138:1365–1673.

    Google Scholar 

  • DeBry, R. W., and Seldin, M. F. (1996). Human/mouse homology relationships. Genomics 33:337–351.

    Google Scholar 

  • de Castro, J. M. (1992). Social facilitation of eating: effects of social instruction on food intake. Physiol. Behav. 52:749–754.

    Google Scholar 

  • de Castro, J. M. (1993). Genetic influences on daily intake and meal patterns of humans. Physiol. Behav. 53:777–782.

    Google Scholar 

  • de Castro, J. M. (1994). Family and friends produce greater social facilitation of food intake than other companions. Physiol. Behav. 56:445.

    Google Scholar 

  • Devlin, B., and Risch, N. (1995). A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29:311–322.

    Google Scholar 

  • Duggirala, R., Stern, M. P., Mitchell, B. D., Reinhart, L. J., Shipman, P. A., Uresandi, O. C., Chung, W. K., Leibel, R. L., Hales, C. N., O'Connell, P., and Blangero, J. (1996). Quantitative variation in obesity-related traits and insulin precursors linked to the OB region on human chromosome 7. Am. J. Hum. Genet. 59:694–703.

    Google Scholar 

  • Eaves, L. J. (1994). Effect of genetic architecture on the power of human linkage studies to resolve the contribution of quantitative trait loci. Heredity 72:175–195.

    Google Scholar 

  • Eaves, L., and Meyer J. (1994). Locating human quantitative trait loci: Guidelines for the selection of sibling pairs for genotyping. Behav. Genet. 24:443–455.

    Google Scholar 

  • Eaves, L. J., Neale, M. C., and Maes, H. (1996). Multivariate multipoint linkage analysis of quantitative trait loci. Behav. Genet. 26:519–525.

    Google Scholar 

  • Elston, R. C., Guo, X., and Williams, L. V. (1996). Two-stage global search designs for linkage analysis using pairs of affected relatives. Genet. Epidemiol. 13:535–558.

    Google Scholar 

  • Erickson, J. C., Hollopeter, G., and Palmiter, R. D. (1996). Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274:1704.

    Google Scholar 

  • Ewens, W. J., and Spielman, R. S. (1995). The transmission/disequilibrium test: History, subdivision, and admixture. Am. J. Hum. Genet. 57:455–464.

    Google Scholar 

  • Fabsitz, R. R., Carmelli, D., and Hewitt, J. K. (1992). Evidence for independent genetic influences on obesity in middle age. Int. J. Obes. Relat. Metab. Disord. 16:657–666.

    Google Scholar 

  • Feingold, E., Lamb, N. E., and Sherman, S. L. (1995). Methods for genetic linkage analysis using trisomies. Am. J. Hum. Genet. 56:475–483.

    Google Scholar 

  • Feldt, L. S. (1961). The use of extreme groups to test for the presence of a relationship. Psychometrika 26:307–316.

    Google Scholar 

  • Fisher, R. A. (1958). Statistical Methods for Research Workers, 13th ed., Hafner, New York.

    Google Scholar 

  • Francke, U. (1995). Clinical and molecular cytogenics and gene mapping: Principles and techniques. Southeast Asian J. Trop. Med. Public Health 26(Suppl. 1):34–43.

    Google Scholar 

  • Frankel, W. N., and Schork, N. J. (1996). Who's afraid of epistasis? Nature Genet. 14:371–373.

    Google Scholar 

  • Fujisawa, T., Ikegami, H., Yamato, E., Takekawa, K., Nakagawa, Y., Hamada, Y., Oga, T., Ueda, H., Shintani, M., Fukuda, M., and Ogihara, T. (1996). Association of Trp64Arg mutation of the β3-adrenergic receptor with NIDDM and body weight gain. Diabetologia 39:349–352.

    Google Scholar 

  • Fulker, D. W., and Cardon, L. R. (1994). A sib-pair approach to interval mapping of quantitative trait loci. Am. J. Hum. Genet. 54:1092–1103.

    Google Scholar 

  • Fulker, D. W., and Cherny, S. S. (1996). An improved multipoint sib-pair analysis of quantitative traits. Behav. Genet. 26:527–532.

    Google Scholar 

  • Fulker, D. W., Cherny, S. S., and Cardon, L. R. (1995). Multipoint interval mapping of quantitative trait loci, using sib pairs. Am. J. Hum. Genet. 56:1224–1233.

    Google Scholar 

  • Gagnon, J., Mauriège, P., Roy, S., Sjöstrom, D., Chagnon, Y. C., Dionne, F. T., Oppert, J. M., Pérusse, L., Sjöstrom, L., and Bouchard, C. (1996). The Trp64Arg mutation of the β3 adrenergic receptor gene has no effect on obesity phenotypes in the Québec family study and Swedish obese subjects cohorts. J. Clin. Invest. 98:2086–2093.

    Google Scholar 

  • Genin, E., and Clerget-Darpoux, F. (1996). Association studies in consanguineous populations. Am. J. Hum. Genet. 58:861–866.

    Google Scholar 

  • Ghosh, S., and Schork, N. J. (1996). Genetic analysis of NIDDM. The study of quantitative traits. Diabetes 45:1–14.

    Google Scholar 

  • Goodfellow, P. N., Sefton, L., and Farr, C. J. (1993). Genetic maps. Philos. Trans. Roy. Soc. London Ser. B. Biol. Sci. 339:139–146.

    Google Scholar 

  • Goldgar, D. E. (1990). Multipoint analysis of human quantitative genetic variation. Am. J. Hum. Genet. 47:957–967.

    Google Scholar 

  • Goldgar, D. E., and Oniki, R. S. (1992). Comparison of multipoint identity-by-descent method with parametric multipoint linkage analysis for mapping quantitative traits. Am. J. Hum. Genet. 50:598–606.

    Google Scholar 

  • Gu, C., Todorov, A., and Rao, D. C. (1996). Combining extremely concordant sibpairs with extremely discordant sibpairs provides a cost effective way to linkage analysis of quantitative trait loci. Genet. Epidemiol. 13:513–533.

    Google Scholar 

  • Haseman, J. K., and Elston, R. C. (1972). The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2:3–19.

    Google Scholar 

  • Hastbacka, J., de la Chapelle, A., Kaitila, I., Sistonen, P., Weaver, A., and Lander, E. (1992). Linkage disequilibrium mapping in isolated founder populations: Diastrophic dysplasia in Finland. Nature Genet. 2:204–211.

    Google Scholar 

  • Hauser, E. R., Boehnke, M., Guo, S. W., and Risch, N. (1996). Affected-sib-pair interval mapping and exclusion for complex genetic traits: Sampling considerations. Genet. Epidemiol. 13:117–137.

    Google Scholar 

  • Hedges, L. V., and Olkin, I. (1985). Statistical Methods for Meta-Analysis, Academic Press: Orlando, FL.

    Google Scholar 

  • Heymsfield, S. B., Allison, D. B., Heshka, S., and Pierson, R. N., Jr. (1995b). Assessment of human body composition. In Allison, D. B. (ed.), Handbook of Assessment Methods for Eating Behaviors and Weight-Related Problems, Sage, Thousand Oaks, CA, pp. 515–560.

    Google Scholar 

  • Hochberg, Y., and Tamhane, A. C. (1987). Multiple comparison procedures. In Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, New York.

    Google Scholar 

  • Holmans, P., and Craddock, N. (1997). Efficient strategies for genome scanning using maximum-likelihood affected-sib-pair analysis. Am. J. Hum. Genet. 60:657–666.

    Google Scholar 

  • Houwen, R. H. J. Baharloo, S., Blankenship, K., Raeymaekers, P., Juyn, J., Sandkuijl, L. A., and Feimer, N. B. (1994). Genome screening by searching for shared segments: Mapping a gene for benign recurrent intrahepatic cholestasis. Nature Genet. 8:380–386.

    Google Scholar 

  • Jorde, L. B. (1995). Linkage disequilibrium as a gene-mapping tool. Am. J. Hum. Genet. 56:11–14.

    Google Scholar 

  • Kidd, K. K. (1997). Can we find genes for schizophrenia. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 74:104–111.

    Google Scholar 

  • Korczak, J. F., Pugh, E. W., Premkumar, S., Guo, X., Elston, R. C., and Bailey-Wilson, J. E. (1995). Effects of marker information on sib-pair linkage analysis of a rare disease. Genet. Epidemiol. 12:625–630.

    Google Scholar 

  • Kruglyak, L., and Lander, E. S. (1995a). Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am. J. Hum. Genet. 57:439–454.

    Google Scholar 

  • Kruglyak, L., and Lander, E. S. (1995b). A nonparametric approach for mapping quantitative trait loci. Genetics 139:1421–1428.

    Google Scholar 

  • Kruglyak, L., Daly, M. J., and Lander, E. S. (1995). Rapid multipoint linkage analysis of recessive traits in nuclear families, including homozygosity mapping. Am. J. Hum. Genet. 56:1212–1223.

    Google Scholar 

  • Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., and Lander, E. S. (1996). Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58:1347–1363.

    Google Scholar 

  • Kuczmarski, R. J., Flegal, K. M., Campbell, S. M., and Johnson, C. L. (1994). Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys, 1960 to 1991. JAMA 272:238–239.

    Google Scholar 

  • Lamb, N. E., Feingold, E., and Sherman, S. L. (1996). Statistical models for trisomic phenotypes. Am. J. Hum. Genet. 58:201–212.

    Google Scholar 

  • Lander, E. S., and Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199.

    Google Scholar 

  • Lander, E., and Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genet. 11:241–247.

    Google Scholar 

  • Lander, E. S., and Schork, N. J. (1994). Genetic dissection of complex traits. Science 266:353.

    Google Scholar 

  • Li, Z., and Rao, D. C. (1996). Random effects model for meta-analysis of multiple quantitative sibpair linkage studies. Genet. Epidemiol. 13:377–383.

    Google Scholar 

  • Loehlin, J. C. (1992). Genes and Environment in Personality Development, Sage, Newbury Park, CA.

    Google Scholar 

  • Lynch, M., and Walsh, B. (1997). Fundamentals of Quantitative Genetics, Sinauer Associates, Sunderland, MA (in press).

    Google Scholar 

  • Markel, P. D., and Corley, R. P. (1994). A multivariate analysis of repeated measures: linkage of the albinism gene (Tyr) to a QTL influencing ethanol-induced anesthesia in laboratory mice. Psychiatr. Genet. 4:205–210.

    Google Scholar 

  • McNemar, Q. (1969). Psychological Statistics, 4th ed., J. Wiley, New York.

    Google Scholar 

  • Meyers, D. A. (1993). Genetic approaches to familial aggregation. III. Linkage analysis. In Khoury, M. J., Beaty, T. H., and Cohen, B. H. (eds.), Fundamentals of Genetic Epidemiology, Oxford University Press, New York.

    Google Scholar 

  • Niki, T., Mori, H., Tamori, Y., Kishimoto-Hashimoto, M., Ueno, H., Araki, S., Masugi, J., Sawant, N., Majithia, H. R. Rais, N., et al. (1996). Human obese gene: Molecular screening in Japanese and Asian Indian NIDDM patients associated with obesity. Diabetes 45:675–678.

    Google Scholar 

  • Norman, R. A., Bogardus, C., and Ravussin, E. (1995). Linkage between obesity and a marker near the tumor necrosis factor-α locus in Pima Indians. J. Clin. Invest. 96:158–162.

    Google Scholar 

  • Norman, R. A., Leibel, R. L., Chung, W. K., Power-Kehoe, L., Chua, S. C., Jr., Knowler, W. C., Thompson, D. B., Bogardus, C., and Ravussin, E. (1996). Absence of linkage of obesity and energy metabolism to markers flanking homologues of rodent obesity genes in Pima Indians. Diabetes 45:1229–1232.

    Google Scholar 

  • Norman, R. A., Thompson, D. B., Foroud, T., Garvey, W. T., Bennett, P. H., Bogardus, C., Ravussin, E., and other members of the Pima Diabetes Gene Group (1997). Genomewide search for genes influencing percent body fat in Pima Indians: Suggestive linkage at chromosome 11q21–q22. Am. J. Hum. Genet. 60:166–173.

    Google Scholar 

  • Olson, J. M. (1994). Some empirical properties of an all-relative pairs linkage test. Genet. Epidemiol. 11:41–49.

    Google Scholar 

  • Olson, J. M. (1995). Robust multipoint linkage analysis: an extension of the Haseman-Elston method. Genet. Epidemiol. 12:177–193.

    Google Scholar 

  • Olson, J. M., and Wijsman, E. M. (1993). Linkage between quantitative trait and marker loci: Methods using all relative pairs. Genet. Epidemiol. 10:87–102.

    Google Scholar 

  • Ott, J. (1991). Analysis of Human Genetic Linkage, Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  • Price, R. A. (1994). The case for single gene effects on human obesity. In Bouchard, C. (ed.), The Genetics of Obesity, CRC Press, Boca Raton, FL, pp. 93–108.

    Google Scholar 

  • Price, R. A. (1996). Strategies for identifying human obesity genes. In Bouchard, C., and Bray, G. A. (eds.), Regulation of Body Weight: Biological and Behavioral Mechanisms, John Wiley & Sons, West Sussex, England, pp. 239–250.

    Google Scholar 

  • Reed, D. R., Ding, Y., Xu, W., Cather, C., and Price, R. A. (1995). Human obesity does not segregate with the chromosomal regions of Prader-Willi, Bardet-Biedl, Cohen, Borjeson, or Wilson-Turner syndromes. Obes. Res. 19:599–603.

    Google Scholar 

  • Reed, D. R., Ding, Y., Xu, W., Cather, C., Green, E. D., and Price, R. A. (1996). Extreme obesity may be linked to markers flanking the human OB gene. Diabetes 45:691–694.

    Google Scholar 

  • Rice, J. P. (1997). The role of meta-analysis in linkage studies of complex traits. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 74:112–114.

    Google Scholar 

  • Risch, N. (1990a). Linkage strategies for genetically complex traits. I. Multilocus models. Am. J. Hum. Genet. 46:222–228.

    Google Scholar 

  • Risch, N. (1990b). Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am. J. Hum. Genet. 46:229–241.

    Google Scholar 

  • Risch, N., and Merikangis, K. R. (1996). The future of genetic studies of complex human diseases. Science 273:1516–1517.

    Google Scholar 

  • Risch, N., and Zhang, H. (1995). Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 268:1584–1589.

    Google Scholar 

  • Risch, N., and Zhang, H. (1996). Mapping quantitative trait loci with extreme discordant sib pairs: Sampling considerations. Am. J. Hum. Genet. 58:836–843.

    Google Scholar 

  • Schizophrenia Linkage Collaborative Group (1996). Additional support for linkage on chromosomes 6 and 8: A multicenter study. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 67:580–594.

    Google Scholar 

  • Schork, N. J. (1993). Extended multipoint identity-by-descent analysis of human quantitative traits: Efficiency, power, and modeling considerations. Am. J. Hum. Genet. 53:1306–1319.

    Google Scholar 

  • Schork, N. J. (1997a). Genetically complex cardiovascular traits: Origins, problems, and potential solutions. Hypertension 29:145–149.

    Google Scholar 

  • Schork, N. J. (1997b). Genetics of complex disease: Approaches, problems, and solutions (in press).

  • Schork, N. J., and Chakravarti, A. (1996). A nonmathematical overview of modern gene mapping techniques applied to human diseases. In Mockrin, S. C. (ed.), Molecular Genetics and Gene Therapy of Cardiovascular Disease, Marcel Dekker, New York, pp. 79–109.

    Google Scholar 

  • Schork, N. J., and Guo, S. W. (1993). Pedigree models for complex human traits involving the mitochondrial genome. Am. J. Hum. Genet. 53:1320–1337.

    Google Scholar 

  • Schork, N. J., and Xu, X. (1997). Sibpairs versus pedigrees: What are the advantages? Diabetes Rev. (in press).

  • Schork, N. J., Boehnke, M., Terwilliger, J. D., and Ott, J. (1994). Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits. Am. J. Hum. Genet. 55:1127–1136.

    Google Scholar 

  • Schork, N. J., Nath, S. P., Lindpaintner, K., and Jacob, H. J. (1996a). Extensions to quantitative trait locus mapping in experimental organisms. Hypertension 28:1104–1111.

    Google Scholar 

  • Schork, N. J., Thiel, B., and St. Jean, P. (1996b). A general haplotype sharing procedure for mapping complex trait loci (submitted for publication).

  • Schork, N. J., Allison, D. B., and Theil, B. (1996c). Mixture distributions in human genetics research. Stat. Methods Med. Res. 5:155–178.

    Google Scholar 

  • Schork, N. J., Allison, D. B., St. Jean, P., and Elston, R. C. (1997). The increased power offered by multivariate linkage strategies (in preparation).

  • Sepehmia, B., Prezant, T. R., Rotter, J. I., Pettitt, D. J., Knowler, W. C., and Fischel-Ghodsian, N. (1995). Scrcening for mtDNA diabetes mutations in Pima Indians with NIDDM. Am. J. Med. Genet. 56:198–202.

    Google Scholar 

  • Sheffield, V. C., Nishimura, D. Y., and Stone, E. M. (1995). Novel approaches to linkage mapping. Curr. Opin. Genet. Dev. 5:335–341.

    Google Scholar 

  • Single, R. M., and Finch, S. J. (1995). Gain in efficiency from using generalized least squares in the Haseman-Elston test. Genet. Epidemiol. 12:889–894.

    Google Scholar 

  • Spielman, R. S., McGinnis, R. E., and Ewens, W. J. (1993). The transmission test for linkage disequilibrium: The insulin gene and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52:506–516.

    Google Scholar 

  • Stephens, J. C., Briscoe, D., and O'Brien, S. J. (1994). Mapping by admixture linkage disequilibrium in human populations: Limits and guidelines. Am. J. Hum. Genet. 55:809–824.

    Google Scholar 

  • St. Jean, P., Thiel, B., Allison, D. B., Markel, P., Elston, R. C., and Schork, N. J. (1996). Multiple phenotype modeling in gene mapping studies for quantitative traits. Am. J. Hum. Genet. 59(4):A237 (abstract).

    Google Scholar 

  • Stewart, L. A., and Parmar, M. K. (1993). Meta-analysis of the literature or of individual patient data: Is there a difference? Lancet 341:418–422.

    Google Scholar 

  • Tartaglia, L. A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, G. J., Campfield, L. A., Clark, F. T., Deeds, J., et al. (1995). Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271.

    Google Scholar 

  • Taylor, B. A., and Phillips, S. J. (1996). Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics 34:389–398.

    Google Scholar 

  • te Meerman, G. J., van der Meulen, M. A., and Sandkuijl, L. A. (1995). Perspectives of identity by descent (IBD) mapping in founder populations. Clin. Exp. Allergy 25:97–102.

    Google Scholar 

  • Thomson, G. (1995). Mapping disease genes: Family-based association studies. Am. J. Hum. Genet. 57:487–498.

    Google Scholar 

  • Todorov, A. A., Province, M. A., Borecki, I. B., and Rao, D. C. (1997). Trade-off between sibship size and sampling scheme for detecting quantitative trait loci. Hum. Hered. 47:1–5.

    Google Scholar 

  • Urhammer, S. A., Clausen, J. O., Hansen, T., and Pedersen, O. (1996). Insulin sensitivity and body weight changes in young white carriers of the codon 64 amino acid polymorphism of the β3-adrenergic receptor gene. Diabetes 45:1115–1120.

    Google Scholar 

  • West, D. B., Goudey-Lefevre, J., York, B., and Truett, G. E. (1994). Dietary obesity linked to genetic loci on chromosomes 9 and 15 in a polygenic mouse model. J. Clin. Invest. 94:1410–1416.

    Google Scholar 

  • Wilson, R. C., and Elston, R. C. (1995). Linkage analysis in the study of the genetics of alcoholism. In Begleiter, H., and Kissin, B. (eds.), The Genetics of Alcoholism, Oxford University Press, New York, pp. 353–376.

    Google Scholar 

  • Wright, F. A. (1997). The phenotypic difference discards sib-pair QTL linkage information. Am. J. Hum. Genet. 60:740–742.

    Google Scholar 

  • Xu, S., and Atchley, W. R. (1995). A random model approach to interval mapping of quantitative trait loci. Genetics 141:1189–1197.

    Google Scholar 

  • Xu, W., Reed, D. R., Ding, Y., and Price, R. A. (1995). Absence of linkage between human obesity and the mouse agouti homologous region (20q11.2) or other markers spanning chromosome 20q. Obes. Res. 3:559–562.

    Google Scholar 

  • Zeng, Z. B. (1993). Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA 90:10972–10976.

    Google Scholar 

  • Zhang, H., and Risch, N. (1996). Mapping quantitative-trait loci in humans by use of extreme concordant sib pairs: Selected sampling by parental phenotypes. Am. J. Hum. Genet. 59:951–957.

    Google Scholar 

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Allison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allison, D.B., Schork, N.J. Selected Methodological Issues in Meiotic Mapping of Obesity Genes in Humans: Issues of Power and Efficiency. Behav Genet 27, 401–421 (1997). https://doi.org/10.1023/A:1025696232582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025696232582

Navigation