Elsevier

Developmental Biology

Volume 274, Issue 1, 1 October 2004, Pages 188-200
Developmental Biology

Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2

https://doi.org/10.1016/j.ydbio.2004.07.006Get rights and content
Under an Elsevier user license
open archive

Abstract

Across vertebrates, there are three principal skeletal tissues: bone, persistent cartilage, and replacement cartilage. Although each tissue has a different evolutionary history and functional morphology, they also share many features. For example, they function as structural supports, they are comprised of cells embedded in collagen-rich extracellular matrix, and they derive from a common embryonic stem cell, the osteochondroprogenitor. Occasionally, homologous skeletal elements can change tissue type through phylogeny. Together, these observations raise the possibility that skeletal tissue identity is determined by a shared set of genes. Here, we show that misexpression of either Sox9 or Runx2 can substitute bone with replacement cartilage or can convert persistent cartilage into replacement cartilage and vice versa. Our data also suggest that these transcription factors function in a molecular hierarchy in which chondrogenic factors dominate. We propose a binary molecular code that determines whether skeletal tissues form as bone, persistent cartilage, or replacement cartilage. Finally, these data provide insights into the roles that master regulatory genes play during evolutionary change of the vertebrate skeleton.

Keywords

Sox9
Runx2
Persistent cartilage
Replacement cartilage
Bone
Transcription factors
Differentiation
Secondary cartilage
Dominance
Skeletal evolution

Cited by (0)