Skip to main content
Log in

Bidirectional expression of the SCA8 expansion mutation: One mutation, two genes

  • Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 8 (SCA8) is a dominantly inherited, slowly progressive neurodegenerative disorder caused by a CTG·CAG repeat expansion located on chromosome 13q21. The expansion mutation was isolated directly from the DNA of a single patient using RAPID cloning and subsequently shown to co-segregate with disease in additional ataxia families including a seven-generation kindred (the MN-A family). The size-dependent penetrance of the repeat found in the large MN-A kindred makes it appear as though some parts of the family have a dominant disorder while other parts of this same family have recessive or sporadic forms of ataxia. While the linkage and size-dependent penetrance of the SCA8 CTG·CAG expansion in the MN-A family argue that the SCA8 expansion causes ataxia, the reduced penetrance in other SCA8 families and the discovery of expansions in the general population have led to a controversy surrounding whether or not the SCA8 expansion is pathogenic. A recently reported mouse model in which SCA8 BAC-expansion but not BAC-control lines develop a progressive neurological phenotype now demonstrates the pathogenicity of the (CTG·CAG)n expansion. These mice show a loss of cerebellar GABAergic inhibition and, similar to human patients, have 1C2-positive intranuclear inclusions in Purkinje cells and other neurons. Additional studies demonstrate that the SCA8 expansion is expressed in both directions (CUG and CAG) and that a novel gene expressed in the CAG direction encodes a pure polyglutamine expansion protein (ataxin 8, ATXN8). Moreover, the expression of non-coding (CUG)n expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and the discovery of intranuclear polyglutamine inclusions suggest SCA8 pathogenesis may involve toxic gainof-function mechanisms at both the protein and RNA levels. Our data, combined with the recently reported antisense transcripts spanning the DM1 repeat expansion in the CAG direction and the growing number of reports of antisense transcripts expressed throughout the mammalian genome, raises the possibility that bidirectional expression across pathogenic microsatellite expansions may occur in other expansion disorders, and that potential pathogenic effects of mutations expressed from both strands should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  2. Koob MD, Benzow KA, Bird TD, Day JW, Moseley ML, Ranum LPW. Rapid cloning of expanded trinucleotide repeat sequences from genomic DNA. Nat Genet. 1998;18:72–5.

    Article  PubMed  CAS  Google Scholar 

  3. Schalling M, Hudson T, Buetow K, Housman D. Direct detection of novel expanded trinucleotide repeats in the human genome. Nat Genet. 1993;4:135–9.

    Article  PubMed  CAS  Google Scholar 

  4. Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 1999;21:379–84.

    Article  PubMed  CAS  Google Scholar 

  5. Mosemiller AK, Dalton JC, Day JW, Ranum LPW. Molecular genetics of spinocerebellar ataxia type 8 (SCA8). Cytogenet Genome Res. 2003;100:175–83.

    Article  PubMed  CAS  Google Scholar 

  6. Day JW, Schut LJ, Moseley ML, Durand AC, Ranum LPW. Spinocerebellar ataxia type 8: clinical features in a large family. Neurology. 2000;55:649–57.

    PubMed  CAS  Google Scholar 

  7. Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M. Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology. 2000;54:950–5.

    Article  PubMed  CAS  Google Scholar 

  8. Juvonen V, Hietala M, Paivarinta M, Rantamaki M, Hakamies L, Kaakkola S, et al. Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann Neurol. 2000;48:354–61.

    Article  PubMed  CAS  Google Scholar 

  9. Silveira I, Alonso I, Guimaraes L, Mendonca P, Santos C, Maciel P, et al. High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet. 2000;66:830–40.

    Article  PubMed  CAS  Google Scholar 

  10. Brusco A, Cagnoli C, Franco A, Dragone E, Nardacchione A, Grosso E, et al. Analysis of SCA8 and SCA12 loci in 134 Italian ataxic patients negative for SCA1–3, 6 and 7 CAG expansions. J Neurol. 2002;249:923–9.

    Article  PubMed  Google Scholar 

  11. Topisirovic I, Dragasevic N, Savic D, Ristic A, Keckarevic M, Keckarevic D, et al. Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Yugoslavia. Clin Genet. 2002;62:321–4.

    Article  PubMed  CAS  Google Scholar 

  12. Anderson JH, Yavuz MC, Kazar BM, Christova P, Gomez CM. The vestibulo-ocular reflex and velocity storage in spinocerebellar ataxia 8. Arch Ital Biol. 2002;140:323–9.

    PubMed  CAS  Google Scholar 

  13. Zeman A, Stone J, Porteous M, Burns E, Barron L, Warner J. Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatry. 2004;75:459–65.

    Article  PubMed  CAS  Google Scholar 

  14. Ikeda Y, Shizuka-Ikeda M, Watanabe M, Schmitt M, Okamoto K, Shoji M. Asymptomatic CTG expansion at the SCA8 locus is associated with cerebellar atrophy on MRI. J Neurol Sci. 2000;182:76–9.

    Article  PubMed  CAS  Google Scholar 

  15. Ikeda Y, Moseley ML, Dalton JC, Su MT, Hsieh-Li HM, Lee-Chen GJ, et al. Purkinje cell degeneration and 1C2 positive neuronal intranuclear inclusions in SCA8 patients. Am J Hum Genet. 2004;Suppl.:441.

    Google Scholar 

  16. Cellini E, Nacmias B, Forleo P, Piacentini S, Guarnieri BM, Serio A, et al. Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Italy. Arch Neurol. 2001;58:1856–9.

    Article  PubMed  CAS  Google Scholar 

  17. Ikeda Y, Dalton JC, Moseley ML, Gardner KL, Bird TD, Ashizawa T, et al. Spinocerebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia. Am J Hum Genet. 2004;75:3–16.

    Article  PubMed  CAS  Google Scholar 

  18. Ranum LPW, Moseley ML, Leppert M, Guan den Eng MF, La Spada AR, Koob MD, et al. Massive CTG expansions and deletions reduce penetrance of spinocerebellar ataxia type 8. Am J Hum Genet. 1999;65:A466.

    Google Scholar 

  19. Moseley ML, Schut LJ, Bird TD, Koob MD, Day JW, Ranum LPW. SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet. 2000;9:2125–30.

    Article  PubMed  CAS  Google Scholar 

  20. Worth PF, Houlden H, Giunti P, Davis MB, Wood NW. Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet. 2000;24:214–5.

    Article  PubMed  CAS  Google Scholar 

  21. Vincent JB, Neves-Pereira ML, Paterson AD, Yamamoto E, Parikh SV, Macciardi F, et al. An unstable trinucleotiderepeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am J Hum Genet. 2000;66:819–29.

    Article  PubMed  CAS  Google Scholar 

  22. Sulek A, Hoffman-Zacharska D, Zdzienicka E, Zaremba J. SCA8 repeat expansion coexists with SCA1–not only with SCA6. Am J Hum Genet. 2003;73:972–4.

    Article  PubMed  CAS  Google Scholar 

  23. Izumi Y, Maruyama H, Oda M, Morino H, Okada T, Ito H, et al. SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients, including those with SCA6. Am J Hum Genet. 2003;72:704–9.

    Article  PubMed  CAS  Google Scholar 

  24. Sobrido MJ, Cholfin JA, Perlman S, Pulst SM, Geschwind DH. SCA8 repeat expansions in ataxia: a controversial association. Neurology. 2001;57:1310–2.

    PubMed  CAS  Google Scholar 

  25. Vincent JB, Yuan QP, Schalling M, Adolfsson R, Azevedo MH, Macedo A, et al. Long repeat tracts at SCA8 in major psychosis. Am J Med Genet. 2000;96:873–6.

    Article  PubMed  CAS  Google Scholar 

  26. Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet. 2006;38:758–69.

    Article  PubMed  CAS  Google Scholar 

  27. Janzen MA, Moseley ML, Benzow KA, Day JW, Koob MD, Ranum LPW. Limited expression of SCA8 is consistent with cerebellar pathogenesis and toxic gain of function RNA model. Am J Hum Genet. 1999;65:A276.

    Google Scholar 

  28. Andres AM, Soldevila M, Saitou N, Volpini V, Calafell F, Bertranpetit J. Understanding the dynamics of Spinocerebellar Ataxia 8 (SCA8) locus through a comparative genetic approach in humans and apes. Neurosci Lett. 2003;336:143–6.

    Article  PubMed  CAS  Google Scholar 

  29. Andres AM, Soldevila M, Lao O, Volpini V, Saitou N, Jacobs HT, et al. Comparative genetics of functional trinucleotide tandem repeats in humans and apes. J Mol Evol. 2004;59:329–39.

    Article  PubMed  CAS  Google Scholar 

  30. Benzow KA, Koob MD. The KLHL1-antisense transcript (KLHL1AS) is evolutionarily conserved. Mamm Genome. 2002;13:134–41.

    PubMed  CAS  Google Scholar 

  31. Nemes JP, Benzow KA, Moseley ML, Ranum LPW, Koob MD. The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum Mol Genet. 2000;9:1543–51 (Correction/Addition Hum Mol Genet 9: 2777).

    Article  PubMed  CAS  Google Scholar 

  32. Mutsuddi M, Marshall CM, Benzow KA, Koob MD, Rebay I. The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr Biol. 2004;14:302–8.

    PubMed  CAS  Google Scholar 

  33. de Haro M, Al-Ramahi I, De Gouyon B, Ukani L, Rosa A, Faustino NA, et al. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Hum Mol Genet. 2006;15:2138–45.

    Article  PubMed  Google Scholar 

  34. Houseley JM, Wang Z, Brock GJ, Soloway J, Artero R, Perez-Alonso M, et al. Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Hum Mol Genet. 2005;14:873–83.

    Article  PubMed  CAS  Google Scholar 

  35. He Y, Zu T, Benzow KA, Orr HT, Clark HB, Koob MD. Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci. 2006;26:9975–82.

    Article  PubMed  CAS  Google Scholar 

  36. Ranum LP, Cooper TA. RNA-mediated neuromuscular disorders. Annu Rev Neurosci. 2006;29:259–77.

    Article  PubMed  CAS  Google Scholar 

  37. Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell. 2005;20:483–9.

    Article  PubMed  CAS  Google Scholar 

  38. Holmes SE, O’Hearn E, Rosenblatt A, Callahan C, Hwang HS, Ingersoll-Ashworth RG, et al. A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet. 2001;29:377–8.

    Article  PubMed  CAS  Google Scholar 

  39. Margolis RL, O’Hearn E, Rosenblatt A, Willour V, Holmes SE, Franz ML, et al. A disorder similar to Huntington’s disease is associated with a novel CAG repeat expansion. Ann Neurol. 2001;50:373–80.

    CAS  Google Scholar 

  40. Pineda VV, Libby RT, Dunn G, Baccam S, Smith AC, Tapscott SJ, et al. CTCF regulates ataxin-7 gene expression through promotion of an anti-sense non-coding RNA: a novel system of transcriptional control linking CTCF with noncoding RNA’s. Am J Hum Genet. 2006;Suppl.:71.

    Google Scholar 

  41. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, et al. Antisense transcription in the mammalian transcriptome. Science. 2005;309:1564–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura P. W. Ranum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, Y., Daughters, R.S. & Ranum, L.P.W. Bidirectional expression of the SCA8 expansion mutation: One mutation, two genes. Cerebellum 7, 150–158 (2008). https://doi.org/10.1007/s12311-008-0010-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0010-7

Key words

Navigation