Skip to main content

Advertisement

Log in

NALCN: A Regulator of Pacemaker Activity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pacemaker cells play a fundamental role in generating or regulating many essential biological rhythms. Spontaneous pacemaker activity is dependent on the function of an array of ion channels expressed in these cells. Recent characterization of a Na+ leak channel (NALCN) has linked to its role in conducting the background Na+ current that depolarizes resting membrane properties of pacemaker neurons. NALCN, along with Unc79 and Unc80, forms a protein complex that is involved in regulating intrinsic membrane and synaptic activities. In this review, we will discuss the current understanding of NALCN channel physiology and its role in regulating cell excitability and pacemaker activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982

    Article  PubMed  CAS  Google Scholar 

  2. Harris-Warrick RM (2010) General principles of rhythmogenesis in central pattern generator networks. Prog Brain Res 187:213–222

    Article  PubMed  Google Scholar 

  3. Pena F, Parkis MA, Tryba AK, Ramirez JM (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43:105–117

    Article  PubMed  CAS  Google Scholar 

  4. Tryba AK, Ramirez JM (2004) Background sodium current stabilizes bursting in respiratory pacemaker neurons. J Neurobiol 60:481–489

    Article  PubMed  CAS  Google Scholar 

  5. Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7:232–242

    Article  PubMed  CAS  Google Scholar 

  6. Talley EM, Sirois JE, Lei Q, Bayliss DA (2003) Two-pore-Domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 9:46–56

    Article  PubMed  CAS  Google Scholar 

  7. Honore E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261

    Article  PubMed  CAS  Google Scholar 

  8. Khaliq ZM, Bean BP (2010) Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J Neurosci 30:7401–7413

    Article  PubMed  CAS  Google Scholar 

  9. Jinno S, Ishizuka S, Kosaka T (2003) Ionic currents underlying rhythmic bursting of ventral mossy cells in the developing mouse dentate gyrus. Eur J Neurosci 17:1338–1354

    Article  PubMed  Google Scholar 

  10. Humphrey JA, Hamming KS, Thacker CM, Scott RL, Sedensky MM, Snutch TP, Morgan PG, Nash HA (2007) A putative cation channel and its novel regulator: cross-species conservation of effects on general anesthesia. Curr Biol 17:624–629

    Article  PubMed  CAS  Google Scholar 

  11. Rybak IA, Shevtsova NA, Ptak K, McCrimmon DR (2004) Intrinsic bursting activity in the pre-Botzinger complex: role of persistent sodium and potassium currents. Biol Cybern 90:59–74

    Article  PubMed  Google Scholar 

  12. Del Negro CA, Morgado-Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL (2005) Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci 25:446–453

    Article  PubMed  Google Scholar 

  13. Lu B, Su Y, Das S, Liu J, Xia J, Ren D (2007) The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129:371–383

    Article  PubMed  CAS  Google Scholar 

  14. Lu TZ, Feng ZP (2011) A sodium leak current regulates pacemaker activity of adult central pattern generator neurons in Lymnaea stagnalis. PLoS One 6:e18745

    Article  PubMed  CAS  Google Scholar 

  15. Lear BC, Lin JM, Keath JR, McGill JJ, Raman IM, Allada R (2005) The ion channel narrow abdomen is critical for neural output of the Drosophila circadian pacemaker. Neuron 48:965–976

    Article  PubMed  CAS  Google Scholar 

  16. Nash HA, Scott RL, Lear BC, Allada R (2002) An unusual cation channel mediates photic control of locomotion in Drosophila. Curr Biol 12:2152–2158

    Article  PubMed  CAS  Google Scholar 

  17. Jospin M, Watanabe S, Joshi D, Young S, Hamming K, Thacker C, Snutch TP, Jorgensen EM, Schuske K (2007) UNC-80 and the NCA ion channels contribute to endocytosis defects in synaptojanin mutants. Curr Biol 17:1595–1600

    Article  PubMed  CAS  Google Scholar 

  18. Yeh E et al (2008) A putative cation channel, NCA-1, and a novel protein, UNC-80, transmit neuronal activity in C. elegans. PLoS Biol 6:e55

    Article  PubMed  Google Scholar 

  19. Lee JH, Cribbs LL, Perez-Reyes E (1999) Cloning of a novel four repeat protein related to voltage-gated sodium and calcium channels. FEBS Lett 445:231–236

    Article  PubMed  CAS  Google Scholar 

  20. Swayne LA et al (2009) The NALCN ion channel is activated by M3 muscarinic receptors in a pancreatic beta-cell line. EMBO Rep 10:873–880

    Article  PubMed  CAS  Google Scholar 

  21. Gilon P, Rorsman P (2009) NALCN: a regulated leak channel. EMBO Rep 10:963–964

    Article  PubMed  CAS  Google Scholar 

  22. Swayne LA, Mezghrani A, Lory P, Nargeot J, Monteil A (2010) The NALCN ion channel is a new actor in pancreatic beta-cell physiology. Islets 2:54–56

    Article  PubMed  Google Scholar 

  23. Ren D (2011) Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron 72:899–911

    Article  PubMed  CAS  Google Scholar 

  24. Bouhours M, Po MD, Gao S, Hung W, Li H, Georgiou J, Roder JC, Zhen M (2011) A co-operative regulation of neuronal excitability by UNC-7 Innexin and NCA/NALCN leak channel. Mol Brain 4:16

    Article  PubMed  CAS  Google Scholar 

  25. Lu B, Zhang Q, Wang H, Wang Y, Nakayama M, Ren D (2010) Extracellular calcium controls background current and neuronal excitability via an UNC79-UNC80-NALCN cation channel complex. Neuron 68:488–499

    Article  PubMed  CAS  Google Scholar 

  26. Wang H, Ren D (2009) UNC80 functions as a scaffold for Src kinases in NALCN channel function. Channels (Austin) 3:161–163

    Article  CAS  Google Scholar 

  27. Chen PA, Ernstorm G, Watanabe S, Jorgensen EM (2010) UNC-79 and UNC-80 are required for NCA-1 function. 2010 Neuroscience Meeting Planner Ref Type: Conference Proceeding

  28. Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    Article  PubMed  CAS  Google Scholar 

  29. Biagi BA, Enyeart JJ (1990) Gadolinium blocks low- and high-threshold calcium currents in pituitary cells. Am J Physiol 259:C515–C520

    PubMed  CAS  Google Scholar 

  30. Mlinar B, Enyeart JJ (1993) Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. J Physiol 469:639–652

    PubMed  CAS  Google Scholar 

  31. Bleakman D et al (1995) Characteristics of a human N-type calcium channel expressed in HEK293 cells. Neuropharmacology 34:753–765

    Article  PubMed  CAS  Google Scholar 

  32. Caldwell RA, Clemo HF, Baumgarten CM (1998) Using gadolinium to identify stretch-activated channels: technical considerations. Am J Physiol 275:C619–C621

    PubMed  CAS  Google Scholar 

  33. Elinder F, Arhem P (1994) Effects of gadolinium on ion channels in the myelinated axon of Xenopus laevis: four sites of action. Biophys J 67:71–83

    Article  PubMed  CAS  Google Scholar 

  34. Tokimasa T, North RA (1996) Effects of barium, lanthanum and gadolinium on endogenous chloride and potassium currents in Xenopus oocytes. J Physiol 496(Pt 3):677–686

    PubMed  CAS  Google Scholar 

  35. Lu B, Su Y, Das S, Wang H, Wang Y, Liu J, Ren D (2009) Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80. Nature 457:741–744

    Article  PubMed  CAS  Google Scholar 

  36. Krishnan KS, Nash HA (1990) A genetic study of the anesthetic response: mutants of D. melanogaster altered in sensitivity to halothane. Proc Natl Acad Sci U S A 87:8632–8636

    Article  PubMed  CAS  Google Scholar 

  37. Leibovitch BA, Campbell DB, Krishnan KS, Nash HA (1995) Mutations that affect ion channels change the sensitivity of D. melanogaster to volatile anesthetics. J Neurogenet 10:1–13

    Article  PubMed  CAS  Google Scholar 

  38. Thoby-Brisson M, Ramirez JM (2000) Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro. J Neurosci 20:5858–5866

    PubMed  CAS  Google Scholar 

  39. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  PubMed  CAS  Google Scholar 

  40. Koizumi H, Smith JC (2008) Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. J Neurosci 28:1773–1785

    Article  PubMed  CAS  Google Scholar 

  41. Bennett BD, Callaway JC, Wilson CJ (2000) Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci 20:8493–8503

    PubMed  CAS  Google Scholar 

  42. Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443–3456

    PubMed  CAS  Google Scholar 

  43. Hallworth NE, Wilson CJ, Bevan MD (2003) Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J Neurosci 23:7525–7542

    PubMed  CAS  Google Scholar 

  44. Del Negro CA, Koshiya N, Butera RJ Jr, Smith JC (2002) Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. J Neurophysiol 88:2242–2250

    Article  PubMed  Google Scholar 

  45. Do MT, Bean BP (2003) Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron 39:109–120

    Article  PubMed  CAS  Google Scholar 

  46. Onimaru H, Ballanyi K, Richter DW (1996) Calcium-dependent responses in neurons of the isolated respiratory network of newborn rats. J Physiol 491(Pt 3):677–695

    PubMed  CAS  Google Scholar 

  47. Onimaru H, Arata A, Homma I (1997) Neuronal mechanisms of respiratory rhythm generation: an approach using in vitro preparation. Jpn J Physiol 47:385–403

    Article  PubMed  CAS  Google Scholar 

  48. DiFrancesco D, Ferroni A, Mazzanti M, Tromba C (1986) Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sino-atrial node. J Physiol 377:61–88

    PubMed  CAS  Google Scholar 

  49. Accili EA, Proenza C, Baruscotti M, DiFrancesco D (2002) From funny current to HCN channels: 20 years of excitation. News Physiol Sci 17:32–37

    PubMed  CAS  Google Scholar 

  50. Baruscotti M, Bucchi A, DiFrancesco D (2005) Physiology and pharmacology of the cardiac pacemaker ("funny") current. Pharmacol Ther 107:59–79

    Article  PubMed  CAS  Google Scholar 

  51. Barbuti A, Terragni B, Brioschi C, DiFrancesco D (2007) Localization of f-channels to caveolae mediates specific beta2-adrenergic receptor modulation of rate in sinoatrial myocytes. J Mol Cell Cardiol 42:71–78

    Article  PubMed  CAS  Google Scholar 

  52. Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol 395:233–253

    PubMed  CAS  Google Scholar 

  53. Satoh H (1995) Role of T-type Ca2+ channel inhibitors in the pacemaker depolarization in rabbit sino-atrial nodal cells. Gen Pharmacol 26:581–587

    Article  PubMed  CAS  Google Scholar 

  54. Kodama I, Nikmaram MR, Boyett MR, Suzuki R, Honjo H, Owen JM (1997) Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Physiol 272:H2793–H2806

    PubMed  CAS  Google Scholar 

  55. Putzier I, Kullmann PH, Horn JP, Levitan ES (2009) Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 29:15414–15419

    Article  PubMed  CAS  Google Scholar 

  56. Guo J, Ono K, Noma A (1995) A sustained inward current activated at the diastolic potential range in rabbit sino-atrial node cells. J Physiol 483(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  57. Baruscotti M, DiFrancesco D, Robinson RB (1996) A TTX-sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino-atrial node cells. J Physiol 492(Pt 1):21–30

    PubMed  CAS  Google Scholar 

  58. Ono K, Ito H (1995) Role of rapidly activating delayed rectifier K+ current in sinoatrial node pacemaker activity. Am J Physiol 269:H453–H462

    PubMed  CAS  Google Scholar 

  59. Clark RB, Mangoni ME, Lueger A, Couette B, Nargeot J, Giles WR (2004) A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells. Am J Physiol Heart Circ Physiol 286:H1757–H1766

    Article  PubMed  CAS  Google Scholar 

  60. Huang ZM, Prasad C, Britton FC, Ye LL, Hatton WJ, Duan D (2009) Functional role of CLC-2 chloride inward rectifier channels in cardiac sinoatrial nodal pacemaker cells. J Mol Cell Cardiol 47:121–132

    Article  PubMed  CAS  Google Scholar 

  61. Paton JF, Abdala AP, Koizumi H, Smith JC, St-John WM (2006) Respiratory rhythm generation during gasping depends on persistent sodium current. Nat Neurosci 9:311–313

    Article  PubMed  CAS  Google Scholar 

  62. Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Role of persistent sodium current in mouse preBotzinger Complex neurons and respiratory rhythm generation. J Physiol 580:485–496

    Article  PubMed  CAS  Google Scholar 

  63. Dunmyre JR, Del Negro CA, Rubin JE (2011) Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. J Comput Neurosci 31:305–328

    Article  PubMed  Google Scholar 

  64. Vandael DH, Marcantoni A, Mahapatra S, Caro A, Ruth P, Zuccotti A, Knipper M, Carbone E (2010) Ca(v)1.3 and BK channels for timing and regulating cell firing. Mol Neurobiol 42:185–198

    Article  PubMed  CAS  Google Scholar 

  65. Marcantoni A, Vandael DH, Mahapatra S, Carabelli V, Sinnegger-Brauns MJ, Striessnig J, Carbone E (2010) Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells. J Neurosci 30:491–504

    Article  PubMed  CAS  Google Scholar 

  66. Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548

    Article  PubMed  CAS  Google Scholar 

  67. Pang DS, Robledo CJ, Carr DR, Gent TC, Vyssotski AL, Caley A, Zecharia AY, Wisden W, Brickley SG, Franks NP (2009) An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc Natl Acad Sci U S A 106:17546–17551

    Article  PubMed  CAS  Google Scholar 

  68. Zhao S, Golowasch J, Nadim F (2010) Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current. Front Behav Neurosci 4:21

    PubMed  Google Scholar 

  69. Brickley SG, Aller MI, Sandu C, Veale EL, Alder FG, Sambi H, Mathie A, Wisden W (2007) TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons. J Neurosci 27:9329–9340

    Article  PubMed  CAS  Google Scholar 

  70. Hodgkin AL, Huxley AF (1947) Potassium leakage from an active nerve fibre. J Physiol 106:341–367

    Google Scholar 

  71. Keynes RD (1951) The ionic movements during nervous activity. J Physiol 114:119–150

    PubMed  CAS  Google Scholar 

  72. Hagiwara N, Irisawa H, Kasanuki H, Hosoda S (1992) Background current in sino-atrial node cells of the rabbit heart. J Physiol 448:53–72

    PubMed  CAS  Google Scholar 

  73. Miyoshi H, Yamaoka K, Garfield RE, Ohama K (2004) Identification of a non-selective cation channel current in myometrial cells isolated from pregnant rats. Pflugers Arch 447:457–464

    Article  PubMed  CAS  Google Scholar 

  74. Syed NI, Bulloch AG, Lukowiak K (1990) In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. Science 250:282–285

    Article  PubMed  CAS  Google Scholar 

  75. Winlow W, Syed NI (1992) The respiratory central pattern generator of Lymnaea. Acta Biol Hung 43:399–408

    PubMed  CAS  Google Scholar 

  76. Brockhaus J, Ballanyi K (1998) Synaptic inhibition in the isolated respiratory network of neonatal rats. Eur J Neurosci 10:3823–3839

    Article  PubMed  CAS  Google Scholar 

  77. Sinke AP, Caputo C, Tsaih SW, Yuan R, Ren D, Deen PM, Korstanje R (2011) Genetic analysis of mouse strains with variable serum sodium concentrations identifies the NALCN sodium channel as a novel player in osmoregulation. Physiol Genomics 43:265–270

    Article  PubMed  CAS  Google Scholar 

  78. Sinke AP, Deen PM (2011) The physiological implication of novel proteins in systemic osmoregulation. FASEB J 25:3279–3289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

TZL is a recipient of a Graduate Studentship of Natural Sciences and Engineering Research Council of Canada; ZPF holds a New Investigator Award from the Heart and Stroke Foundation of Canada. This work is supported by a Discovery Operating Grant to ZPF by Natural Sciences and Engineering Research Council of Canada (249962-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ping Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, T.Z., Feng, ZP. NALCN: A Regulator of Pacemaker Activity. Mol Neurobiol 45, 415–423 (2012). https://doi.org/10.1007/s12035-012-8260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8260-2

Keywords

Navigation