Skip to main content
Log in

miRNAs: A New Method for Erythroid Differentiation of Hematopoietic Stem Cells Without the Presence of Growth Factors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Micro RNAs (miRNAs) are a novel class of non-coding regulatory RNA molecules that contribute to post-transcriptional gene regulation. Recent studies have demonstrated that specific miRNAs such as miR-150, miR-154, and miR-451 have key roles in erythropoiesis. To date, stimulatory cytokines are considered as unique effectors for in vitro differentiation of HSCs to erythropoietic lineage. However, the use of these factors is not cost-effective for clinical applications and therapeutic strategies. Here, we present a novel and cost-effective strategy in which miRNAs expression modulation promotes erythroid differentiation in HSCs in the absence of any extrinsic factors. Thus, CD133+ hematopoietic stem cells purified from human umbilical cord blood were treated with pre-miR-451 containing lentiviruses, anti-miR-150 and anti-miR-154 in the absence of growth factors and cytokines. Obtained results indicated that miR-451 upregulation and miR-150 downregulation have positive effect on GATA-1, FOG-1, and EKLF, CD71 and CD235a genes expression and induce hemoglobinization efficiently. However, downregulation of miR-154 had no effect on erythropoiesis indexes compared to that observed in the control group. In conclusion, the data presented here for the first time demonstrate that expression modulation of miR-451 and miR-150 could be an efficient alternative to stimulatory cytokines for CD133+ differentiation into erythroid lineage. Modulation of erythropoiesis in stem cells via miRNA holds promising potential for vascular tissue engineering and regenerative medicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cullen, B. R. (2004). Virus Research, 102, 3–9.

    Article  CAS  Google Scholar 

  2. Bushati, N., & Cohen, S. M. (2007). Annual Review of Cell and Developmental Biology, 23, 175–205.

    Article  CAS  Google Scholar 

  3. Huang, Y., Shen, X. J., Zou, Q., Wang, S. P., Tang, S. M., & Zhang, G. Z. (2011). Journal of Physiology and Biochemistry, 67, 129–139.

    Article  CAS  Google Scholar 

  4. Babashah, S., & Soleimani, M. (2011). European Journal of Cancer, 47, 1127–1137.

    Article  CAS  Google Scholar 

  5. He, L., & Hannon, G. J. (2004). Nature Reviews. Genetics, 5, 522–531.

    Article  CAS  Google Scholar 

  6. Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Nature Reviews. Genetics, 9, 102–114.

    Article  CAS  Google Scholar 

  7. Nilsen, T. W. (2007). Trends in Genetics : TIG, 23, 243–249.

    Article  CAS  Google Scholar 

  8. Georgantas, R. W., 3rd, Hildreth, R., Morisot, S., Alder, J., Liu, C. G., Heimfeld, S., Calin, G. A., Croce, C. M., & Civin, C. I. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104, 2750–2755.

    Article  CAS  Google Scholar 

  9. Chen, C. Z., & Lodish, H. F. (2005). Seminars in Immunology, 17, 155–165.

    Article  CAS  Google Scholar 

  10. Shi, B., Prisco, M., Calin, G., Liu, C. G., Russo, G., Giordano, A., & Baserga, R. (2006). Journal of Cellular Physiology, 207, 706–710.

    Article  CAS  Google Scholar 

  11. Garzon, R., Pichiorri, F., Palumbo, T., Iuliano, R., Cimmino, A., Aqeilan, R., Volinia, S., Bhatt, D., Alder, H., Marcucci, G., Calin, G. A., Liu, C. G., Bloomfield, C. D., Andreeff, M., & Croce, C. M. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 5078–5083.

    Article  CAS  Google Scholar 

  12. Zhan, M., Miller, C. P., Papayannopoulou, T., Stamatoyannopoulos, G., & Song, C. Z. (2007). Experimental Hematology, 35, 1015–1025.

    Article  CAS  Google Scholar 

  13. Garzon, R., & Croce, C. M. (2008). Current Opinion in Hematology, 15, 352–358.

    Article  CAS  Google Scholar 

  14. Merkerova, M., Belickova, M., & Bruchova, H. (2008). European Journal of Haematology, 81, 304–310.

    Article  CAS  Google Scholar 

  15. Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G. A., Liu, C. G., Sorrentino, A., Croce, C. M., & Peschle, C. (2005). Proceedings of the National Academy of Sciences of the United States of America, 102, 18081–18086.

    Article  CAS  Google Scholar 

  16. Cantor, A. B., & Orkin, S. H. (2002). Oncogene, 21, 3368–3376.

    Article  CAS  Google Scholar 

  17. Scicchitano, M. S., McFarland, D. C., Tierney, L. A., Narayanan, P. K., & Schwartz, L. W. (2003). Experimental Hematology, 31, 760–769.

    Article  CAS  Google Scholar 

  18. Goh, S. H., Josleyn, M., Lee, Y. T., Danner, R. L., Gherman, R. B., Cam, M. C., & Miller, J. L. (2007). Physiological Genomics, 30, 172–178.

    Article  CAS  Google Scholar 

  19. Yang, G. H., Wang, F., Yu, J., Wang, X. S., Yuan, J. Y., & Zhang, J. W. (2009). Journal of Cellular Biochemistry, 107, 548–556.

    Article  CAS  Google Scholar 

  20. Havelange, V., & Garzon, R. (2010). American Journal of Hematology, 85, 935–942.

    Article  CAS  Google Scholar 

  21. Lawrie, C. H., Jr. (2010). Journal of Haematology, 150, 144–151.

    CAS  Google Scholar 

  22. Choong, M. L., Yang, H. H., & McNiece, I. (2007). Experimental Hematology, 35, 551–564.

    Article  CAS  Google Scholar 

  23. Lu, J., Guo, S., Ebert, B. L., Zhang, H., Peng, X., Bosco, J., Pretz, J., Schlanger, R., Wang, J. Y., Mak, R. H., Dombkowski, D. M., Preffer, F. I., Scadden, D. T., & Golub, T. R. (2008). Developmental Cell, 14, 843–853.

    Article  CAS  Google Scholar 

  24. Masaki, S., Ohtsuka, R., Abe, Y., Muta, K., & Umemura, T. (2007). Biochemical and Biophysical Research Communications, 364, 509–514.

    Article  CAS  Google Scholar 

  25. Nakamura, Y. (2008). Biotechnology & Genetic Engineering Reviews, 25, 187–201.

    Article  CAS  Google Scholar 

  26. Neildez-Nguyen, T. M., Wajcman, H., Marden, M. C., Bensidhoum, M., Moncollin, V., Giarratana, M. C., Kobari, L., Thierry, D., & Douay, L. (2002). Nature Biotechnology, 20, 467–472.

    Article  CAS  Google Scholar 

  27. Cook, M. S., & Blelloch, R. (2013). Current Topics in Developmental Biology, 102, 159–205.

    Article  CAS  Google Scholar 

  28. Siatecka, M., & Bieker, J. J. (2011). Blood, 118, 2044–2054.

    Article  CAS  Google Scholar 

  29. Dore, L. C., & Crispino, J. D. (2011). Blood, 118, 231–239.

    Article  CAS  Google Scholar 

  30. Mancini, E., Sanjuan-Pla, A., Luciani, L., Moore, S., Grover, A., Zay, A., Rasmussen, K. D., Luc, S., Bilbao, D., O'Carroll, D., Jacobsen, S. E., & Nerlov, C. (2012). The EMBO Journal, 31, 351–365.

    Article  CAS  Google Scholar 

  31. Bruchova, H., Yoon, D., Agarwal, A. M., Mendell, J., & Prchal, J. T. (2007). Experimental Hematology, 35, 1657–1667.

    Article  CAS  Google Scholar 

  32. Bruchova-Votavova, H., Yoon, D., & Prchal, J. T. (2010). Leukemia and Lymphoma, 51, 686–693.

    Article  CAS  Google Scholar 

  33. Chen, K., Liu, J., Heck, S., Chasis, J. A., An, X., & Mohandas, N. (2009). Proceedings of the National Academy of Sciences of the United States of America, 106, 17413–17418.

    Article  CAS  Google Scholar 

  34. Patrick, D. M., Zhang, C. C., Tao, Y., Yao, H., Qi, X., Schwartz, R. J., Jun-Shen Huang, L., & Olson, E. N. (2010). Genes and Development, 24, 1614–1619.

    Article  CAS  Google Scholar 

  35. Olivier, E. N., Qiu, C., Velho, M., Hirsch, R. E., & Bouhassira, E. E. (2006). Experimental Hematology, 34, 1635–1642.

    Article  CAS  Google Scholar 

  36. Fujimi, A., Matsunaga, T., Kobune, M., Kawano, Y., Nagaya, T., Tanaka, I., Iyama, S., Hayashi, T., Sato, T., Miyanishi, K., Sagawa, T., Sato, Y., Takimoto, R., Takayama, T., Kato, J., Gasa, S., Sakai, H., Tsuchida, E., Ikebuchi, K., Hamada, H., & Niitsu, Y. (2008). International Journal of Hematology, 87, 339–350.

    Article  Google Scholar 

  37. Ma, F., Ebihara, Y., Umeda, K., Sakai, H., Hanada, S., Zhang, H., Zaike, Y., Tsuchida, E., Nakahata, T., Nakauchi, H., & Tsuji, K. (2008). Proceedings of the National Academy of Sciences of the United States of America, 105, 13087–13092.

    Article  CAS  Google Scholar 

  38. Anstee, D. J. (2010). Transfusion Clinique et Biologique, 17, 104–109.

    Article  CAS  Google Scholar 

  39. Giarratana, M. C., Kobari, L., Lapillonne, H., Chalmers, D., Kiger, L., Cynober, T., Marden, M. C., Wajcman, H., & Douay, L. (2005). Nature Biotechnology, 23, 69–74.

    Article  CAS  Google Scholar 

  40. Tsuchida, E. (1994). The Japanese Journal of Clinical Hematology, 35, 439–445.

    CAS  Google Scholar 

  41. Chang, T. M. (2000). Clinical Haematology, 13, 651–667.

    CAS  Google Scholar 

  42. Lippi, G., Montagnana, M., & Franchini, M. (2011). European Journal of Internal Medicine, 22, 16–19.

    Article  Google Scholar 

  43. Kaufman, D. S. (2009). Blood, 114, 3513–3523.

    Article  CAS  Google Scholar 

  44. Mountford, J., Olivier, E., & Turner, M. (2010). British Journal of Haematology, 149, 22–34.

    Article  Google Scholar 

Download references

Acknowledgments

This study was performed at the TarbiatModares University and supported by the Graduate Studies Office. The authors are thankful to all staffs of Stem cell Technology Research center and Department of hematology at TarbiatModares University for their support.

Conflicts of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morteza Daliri or Masoud Soleimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouhkan, F., Hafizi, M., Mobarra, N. et al. miRNAs: A New Method for Erythroid Differentiation of Hematopoietic Stem Cells Without the Presence of Growth Factors. Appl Biochem Biotechnol 172, 2055–2069 (2014). https://doi.org/10.1007/s12010-013-0633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0633-0

Keywords

Navigation