Skip to main content
Log in

Characterization of Potential Outcome Measures for Future Clinical Trials in Fragile X Syndrome

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Clinical trials targeting recently elucidated synaptic defects in fragile X syndrome (FXS) will require outcome measures capable of assessing short-term changes in cognitive functioning. Potentially useful measures for FXS were evaluated here in a test–retest setting in males and females with FXS (N = 46). Good reproducibility, determined by an interclass correlation (ICC) or weighted kappa (κ) of 0.7–0.9 was seen for RBANS List and Story Memory, NEPSY Tower, Woodcock–Johnson Spatial Relations and the commissions score from the Carolina Fragile X Project Continuous Performance Test (CPT). This study demonstrates the feasibility of generating test profiles containing reliability data, ability levels required for test performance, and refusal rates to assist with choice of outcome measures in FXS and other cohorts with cognitive disability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antar, L. N., Afroz, R., Dictenberg, J. B., Carroll, R. C., & Bassell, G. J. (2004). Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. Journal of Neuroscience, 24, 2648–2655.

    Article  PubMed  Google Scholar 

  • Aschrafi, A., Cunningham, B. A., Edelman, G. M., & Vanderklish, P. W. (2005). The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Proceedings of the National Academy of Science USA, 102, 2180–2185.

    Article  Google Scholar 

  • Bagni, C., & Greenough, W. T. (2005). From mRNP trafficking to spine dysmorphogenesis: The roots of fragile X syndrome. Nature Reviews Neuroscience, 6, 376–387.

    Article  PubMed  Google Scholar 

  • Bear, M. F. (2005). Therapeutic implications of the mGluR theory of fragile X mental retardation. Genes Brain and Behavior, 4, 393–398.

    Article  Google Scholar 

  • Bear, M. F., Huber, K. M., & Warren, S. T., (2004). The mGluR theory of fragile X mental retardation. Trends in Neuroscience, 27, 370–377.

    Article  Google Scholar 

  • Berry-Kravis, E., Grossman, A. W., Crnic, L. S., & Greenough W. T., (2002). Fragile X syndrome. Current Pediatrics, 2, 316–324.

    Article  Google Scholar 

  • Berry-Kravis, E., Krause, S. E., Block, S., Guter, S., Wuu, J., Leurgans, S., et al. (2006). Effect of CX516, an AMPA-modulating compound, on cognition and behavior in fragile X syndrome: A controlled trial. Journal of Child and Adolescent Psychopharmacology, 16, 525–540.

    Article  PubMed  Google Scholar 

  • Boutet, I. (2005a). Novel behavioral tests to evaluate treatment outcome in fragile X syndrome. Presented at: Translational Approaches to Fragile X Syndrome: Turning Basic Research Findngs into Therapeutic Targets. Banbury Center, Cold Spring Harbor, NY.

  • Boutet, I., Ryan, M., Kulaga, V., McShane, C., Christie, L. A., Freedman, M., et al. (2005b). Age-associated cognitive deficits in humans and dogs: A comparative neuropsychological approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29, 433–441.

    Article  PubMed  Google Scholar 

  • Chuang, S.-C., Zhao, W., Bauschwitz, R., Yan, Q., Bianchi, R., & Wong, R. K. S. (2005). Prolonged epileptiform discharged induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. Journal of Neuroscience, 25(35), 8048–8055.

    Article  PubMed  Google Scholar 

  • Devys, D., Lutz, Y., Rouyer, N., Belloc, J.-P., & Mandel, J.-L. (1993). The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nature Genetics, 4, 335–340.

    Article  PubMed  Google Scholar 

  • Gabel, L. A., Won, S., Kawai, H., McKinney, M., Tartakoff, A. M., & Fallon, J. R. (2004). Visual experience regulates transient expression and dendritic localization of fragile X mental retardation protein. Journal of Neuroscience, 24, 10578–10583.

    Article  Google Scholar 

  • Grossman, A. W., Aldridge, G. M., Weiler, I. J., & Greenough, W. T. (2006). Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. Journal of Neuroscience, 26, 7151–7155.

    Article  PubMed  Google Scholar 

  • Huber, K. M., Gallagher. S. M., Warren, S. T., & Bear, M. F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proceedings of the National Academy of Science USA, 99, 7746–50.

    Article  Google Scholar 

  • Irwin, S. A., Christmon, C. A., Grossman, A. W., Galvez, R., Kimm H. S., DeGrush, B. J., et al. (2005). Fragile X mental retardation protein levels increase following complex environment exposure in rat brain regions undergoing active synaptogenesis. Neurobiolgy of Learning and Memory, 83, 180–187.

    Article  Google Scholar 

  • Irwin, S. A., Idupulapati, M., Gilbert, M. E., Harris, J. B., Chakravarti, A. B., Rogers, E. J., et al. (2002). Dendritic spine and dendritic field characteristics of later V pyramidal neurons in the visual cortex of fragile X-knockout mice. American Journal of Medical Genetics, 111, 140–146.

    Article  PubMed  Google Scholar 

  • Johnson-Glenberg, M. C. (2004). Patterns of memory in males with fragile X syndrome. 3rd Annual NICHD Fragile X Investigators’ Meeting. Washington, DC.

  • Korkman, M., Kirk, U., & Kemp, S. (1998). NEPSY: A developmental neuropsychological assessment. San Antonio, TX: The Psychological Corporation, Harcourt Brace and Company.

    Google Scholar 

  • Li, J., Pelletier, M. R., Velazquez, J.-L. P., & Carlen, P. L. (2002). Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Molecular and Cellular Neuroscience, 19, 138–151.

    Article  PubMed  Google Scholar 

  • McBride, S., Choi, C. H., Wang, Y., Leibelt, D., Braunstein, E., Ferreiro, D., et al. (2005). Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a model of fragile X syndrome. Neuron, 45, 753–764.

    Article  PubMed  Google Scholar 

  • McCracken, J. T., McGough, J., Shah, B., Cronin, P., Hang, D., Aman, M. G., et al. (2002). Risperidone in children with autism and serious behavioral problems. New England Journal of Medicine, 347, 314–321.

    Article  PubMed  Google Scholar 

  • Randolph, C. (1998). Repeatable battery for the assessment of neuropsychological status (RBANS). San Antonio, TX: The Psychological Corporation, Harcourt Brace and Company.

    Google Scholar 

  • Sullivan, K., Hatton, D. D., Hammer, J., Sideris, J., Hooper, S., Ornstein, P. A., et al. (2007). Sustained attention and response inhibition in boys with fragile X syndrome: Measures of continuous performance. American Journal of Medical Genetics, 144, 517–532.

    Google Scholar 

  • Turner, G., Webb, T., Wake, S., & Robinson, H. (1996). Prevalence of fragile X syndrome. American Journal of Medical Genetics, 64, 196–197.

    Article  PubMed  Google Scholar 

  • Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., Fu, Y. H., Kuhl, D. P., Pizzuti, A., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905–914.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment.

    Google Scholar 

  • Weiler, I. J., Spangler, C. C., Klintsova, A. Y., Grossman, A. W., Kim, S. H., Bertaina-Anglade, V., et al. (2004). Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proceedings of the National Academy of Science USA, 101, 17329–17330.

    Article  Google Scholar 

  • Woodcock, R. W., & Johnson, M. B. (1990). Woodcock–Johnson psycho-educational battery—revised. Allen, TX: DLM Teaching Resources.

    Google Scholar 

  • Yan, Q. J., Rammal, M., Tranfaglia, M., & Baucgwitz, R. P. (2005). Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology, 49, 1053–1066.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Spastic Paralysis Research Foundation of the Illinois-Eastern Iowa District of Kiwanis International. The authors would like to thank Steve Hooper PhD for providing the Carolina Fragile X Project CPT, Mina Johnson PhD for providing the Card Task, and Isabel Boutet PhD for assisting with training of study staff for use of the NVALT. The authors especially thank the fragile X families who participated in this trial for their time and enthusiasm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Berry-Kravis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry-Kravis, E., Sumis, A., Kim, OK. et al. Characterization of Potential Outcome Measures for Future Clinical Trials in Fragile X Syndrome. J Autism Dev Disord 38, 1751–1757 (2008). https://doi.org/10.1007/s10803-008-0564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-008-0564-8

Keywords

Navigation