Skip to main content

Advertisement

Log in

Detection of allelic imbalance in MLH1 expression by pyrosequencing serves as a tool for the identification of germline defects in Lynch syndrome

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Lynch syndrome is an autosomal dominant cancer susceptibility syndrome characterized by the early development of microsatellite unstable colorectal, endometrial and other cancers. Lynch syndrome is caused by germline heterozygous loss-of-function sequence mutations within the mismatch repair genes MLH1, MSH2, MSH6 or PMS2. Some individuals with Lynch syndrome have constitutional epimutations, characterized by promoter methylation and transcriptional inactivation of a single allele in normal somatic tissues, while others lack identifiable pathogenic changes in the germline. We hypothesized that analysis of the relative levels of allelic expression of MLH1 would assist in the identification of cryptic pathogenic defects of MLH1 in five presumed Lynch syndrome cases whose tumours demonstrated MLH1 loss, but whose causative mutation remained unidentified. We exploited the common benign c.655A>G SNP (rs1799977) within MLH1 exon 8 to distinguish between the two genetic alleles in heterozygous individuals and to study their transcriptional activity, using quantitative pyrosequencing assays. In one of the five patients we detected loss of expression of one allele and deletion of the other allele in the tumour, prompting renewed germline screening. A novel intronic splice mutation was subsequently identified, which resulted in loss of an entire exon from the transcript. This pyrosequencing assay also proved useful in demonstrating the gradual reversal of a constitutional MLH1 epimutation during lymphoblastoid cell culture, suggesting this defect may not be stably maintained in immortalized cells. Our findings illustrate that the study of allelic behaviour can complement conventional molecular analyses by providing new insight into the genetic or epigenetic mechanisms underlying disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MSI:

Microsatellite instability

LOH:

Loss of heterozygosity

ROH:

Retention of heterozygosity

AQ:

Allele quantification

PMR:

Percentage methylation reference

FFPE:

Formalin-fixed paraffin-embedded

EBV:

Epstein-Barr virus

LCL:

Lymphoblastoid cell lines

References

  1. Lynch HT (1999) Hereditary nonpolyposis colorectal cancer (HNPCC). Cytogenet Cell Genet 86:130–135

    Article  CAS  PubMed  Google Scholar 

  2. Chung DC, Rustgi AK (2003) The hereditary nonpolyposis colorectal cancer syndrome: genetics and clinical implications. Ann Intern Med 138:560–570

    CAS  PubMed  Google Scholar 

  3. Peltomaki P (2005) Lynch syndrome genes. Fam Cancer 4:227–232

    Article  PubMed  CAS  Google Scholar 

  4. Knudson AG (1996) Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122:135–140

    Article  CAS  PubMed  Google Scholar 

  5. Lindor NM, Burgart LJ, Leontovich O et al (2002) Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 20:1043–1048

    Article  CAS  PubMed  Google Scholar 

  6. Hendriks Y, Franken P, Dierssen JW et al (2003) Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am J Pathol 162:469–477

    CAS  PubMed  Google Scholar 

  7. de Leeuw WJ, Dierssen J, Vasen HF et al (2000) Prediction of a mismatch repair gene defect by microsatellite instability and immunohistochemical analysis in endometrial tumours from HNPCC patients. J Pathol 192:328–335

    Article  PubMed  Google Scholar 

  8. Peltomaki P, Vasen H (2004) Mutations associated with HNPCC predisposition—update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 20:269–276

    PubMed  Google Scholar 

  9. Grabowski M, Mueller-Koch Y, Grasbon-Frodl E et al (2005) Deletions account for 17% of pathogenic germline alterations in MLH1 and MSH2 in hereditary nonpolyposis colorectal cancer (HNPCC) families. Genet Test 9:138–146

    Article  CAS  PubMed  Google Scholar 

  10. McVety S, Li L, Thiffault I et al (2006) The value of multi-modal gene screening in HNPCC in Quebec: three mutations in mismatch repair genes that would have not been correctly identified by genomic DNA sequencing alone. Fam Cancer 5:21–28

    Article  CAS  PubMed  Google Scholar 

  11. Taylor CF, Charlton RS, Burn J, Sheridan E, Taylor GR (2003) Genomic deletions in MSH2 or MLH1 are a frequent cause of hereditary non-polyposis colorectal cancer: identification of novel and recurrent deletions by MLPA. Hum Mutat 22:428–433

    Article  CAS  PubMed  Google Scholar 

  12. Giardiello FM, Brensinger JD, Petersen GM (2001) AGA technical review on hereditary colorectal cancer and genetic testing. Gastroenterology 121:198–213

    Article  CAS  PubMed  Google Scholar 

  13. Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD (2002) A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res 62:3925–3928

    CAS  PubMed  Google Scholar 

  14. Miyakura Y, Sugano K, Akasu T et al (2004) Extensive but hemiallelic methylation of the hMLH1 promoter region in early-onset sporadic colon cancers with microsatellite instability. Clin Gastroenterol Hepatol 2:147–156

    Article  CAS  PubMed  Google Scholar 

  15. Suter CM, Martin DI, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36:497–501

    Article  CAS  PubMed  Google Scholar 

  16. Hitchins M, Williams R, Cheong K et al (2005) MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer. Gastroenterology 129:1392–1399

    Article  CAS  PubMed  Google Scholar 

  17. Hitchins MP, Wong JJ, Suthers G et al (2007) Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med 356:697–705

    Article  CAS  PubMed  Google Scholar 

  18. Valle L, Carbonell P, Fernandez V et al (2007) MLH1 germline epimutations in selected patients with early-onset non-polyposis colorectal cancer. Clin Genet 71:232–237

    Article  CAS  PubMed  Google Scholar 

  19. Morak M, Schackert HK, Rahner N et al (2008) Further evidence for heritability of an epimutation in one of 12 cases with MLH1 promoter methylation in blood cells clinically displaying HNPCC. Eur J Hum Genet 16:804–811

    Article  CAS  PubMed  Google Scholar 

  20. Gylling A, Ridanpaa M, Vierimaa O et al (2009) Large genomic rearrangements and germline epimutations in Lynch syndrome. Int J Cancer 124:2333–2340

    Article  CAS  PubMed  Google Scholar 

  21. Chan TL, Yuen ST, Kong CK et al (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38:1178–1183

    Article  CAS  PubMed  Google Scholar 

  22. Ligtenberg MJ, Kuiper RP, Chan TL et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3’ exons of TACSTD1. Nat Genet 41:112–117

    Article  CAS  PubMed  Google Scholar 

  23. Wang H, Elbein SC (2007) Detection of allelic imbalance in gene expression using pyrosequencing. Methods Mol Biol (Clifton, NJ) 373:157–176

    CAS  Google Scholar 

  24. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11

    Article  CAS  PubMed  Google Scholar 

  25. Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268

    Article  CAS  PubMed  Google Scholar 

  26. Hitchins MP, Ward RL (2007) Erasure of MLH1 methylation in spermatozoa-implications for epigenetic inheritance. Nat Genet 39:1289

    Article  CAS  PubMed  Google Scholar 

  27. Trinh BN, Long TI, Laird PW (2001) DNA methylation analysis by MethyLight technology. Methods 25:456–462

    Article  CAS  PubMed  Google Scholar 

  28. Siu LL, Chan V, Chan JK, Wong KF, Liang R, Kwong YL (2000) Consistent patterns of allelic loss in natural killer cell lymphoma. Am J Pathol 157:1803–1809

    CAS  PubMed  Google Scholar 

  29. Huang YC, Lee CM, Chen M et al (2007) Haplotypes, loss of heterozygosity, and expression levels of glycine N-methyltransferase in prostate cancer. Clin Cancer Res 13:1412–1420

    Article  CAS  PubMed  Google Scholar 

  30. Bentley L, Nakabayashi K, Monk D et al (2003) The imprinted region on human chromosome 7q32 extends to the carboxypeptidase A gene cluster: an imprinted candidate for Silver-Russell syndrome. J Med Genet 40:249–256

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Sun Q, McGrath SD, Mardis ER, Soloway PD, Clark AG (2008) Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PloS One 3:e3839

    Article  PubMed  CAS  Google Scholar 

  32. Green RC, Green AG, Simms M, Pater A, Robb JD, Green JS (2003) Germline hMLH1 promoter mutation in a Newfoundland HNPCC kindred. Clin Genet 64:220–227

    Article  CAS  PubMed  Google Scholar 

  33. Ollikainen M, Hannelius U, Lindgren CM, Abdel-Rahman WM, Kere J, Peltomaki P (2007) Mechanisms of inactivation of MLH1 in hereditary nonpolyposis colorectal carcinoma: a novel approach. Oncogene 26:4541–4549

    Article  CAS  PubMed  Google Scholar 

  34. Renkonen E, Zhang Y, Lohi H et al (2003) Altered expression of MLH1, MSH2, and MSH6 in predisposition to hereditary nonpolyposis colorectal cancer. J Clin Oncol 21:3629–3637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the NH & MRC, the Cancer Institute NSW and the NSW State Cancer Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan P. Hitchins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwok, CT., Ward, R.L., Hawkins, N.J. et al. Detection of allelic imbalance in MLH1 expression by pyrosequencing serves as a tool for the identification of germline defects in Lynch syndrome. Familial Cancer 9, 345–356 (2010). https://doi.org/10.1007/s10689-009-9314-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-009-9314-0

Keywords

Navigation