Skip to main content
Log in

A Dyslexia-Associated Variant in DCDC2 Changes Gene Expression

  • ORIGINAL RESEARCH
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Reading disability (RD) or dyslexia is a common neurogenetic disorder. Two genes, KIAA0319 and DCDC2, have been identified by association studies of the DYX2 locus on 6p21.3. We previously identified a 2445 bp deletion, and a compound STR within the deleted region (BV677278), in intron 2 of DCDC2. The deletion and several alleles of the STR are strongly associated with RD (P = 0.00002). In this study we investigated whether BV677278 is a regulatory region for DCDC2 by electrophoretic mobility shift and luciferase reporter assays. We show that oligonucleotide probes from the STR bind nuclear protein from human brain, and that alleles of the STR have a range of DCDC2-specific enhancer activities. Five alleles displayed strong enhancer activity and increased gene expression, while allele 1 showed no enhancer activity. These studies suggest that the association of BV677278 with RD reflects a role as a modifier of DCDC2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300

    Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14(5):988–995

    Article  PubMed  Google Scholar 

  • Brkanac Z, Chapman NH, Matsushita MM, Chun L, Nielsen K, Cochrane E et al (2007) Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia. Am J Med Genet B Neuropsychiatr Genet 144B(4):556–560

    Article  PubMed  Google Scholar 

  • Cardon LR, Smith SD, Fulker DW, Kimberling WJ, Pennington BF, DeFries JC (1994) Quantitative trait locus for reading disability on chromosome 6. Science 266(5183):276–279

    Article  PubMed  Google Scholar 

  • Cope N, Harold D, Hill G, Moskvina V, Stevenson J, Holmans P et al (2005) Strong evidence that KIAA0319 on chromosome 6p Is a susceptibility gene for developmental dyslexia. Am J Hum Genet 76(4):581–591

    Article  PubMed  Google Scholar 

  • Deffenbacher KE, Kenyon JB, Hoover DM, Olson RK, Pennington BF, DeFries JC et al (2004) Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses. Hum Genet 115:128–138

    Article  PubMed  Google Scholar 

  • DeFries JC, Fulker DW, LaBuda MC (1987) Evidence for a genetic aetiology in reading disability of twins. Nature 329(6139):537–539

    Article  PubMed  Google Scholar 

  • Fisher SE, Marlow AJ, Lamb J, Maestrini E, Williams DF, Richardson AJ et al (1999) A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. Am J Hum Genet 64(1):146–156

    Article  PubMed  Google Scholar 

  • Francks C, Paracchini S, Smith SD, Richardson AJ, Scerri TS, Cardon LR et al (2004) A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet 75(6):1046–1058

    Article  PubMed  Google Scholar 

  • Gabel LA, Gibson CJ, Gruen JR, Loturco JJ (2010) Progress towards a cellular neurobiology of reading disability. Neurobiol Dis 38(2):173–180

    Article  PubMed  Google Scholar 

  • Gayan J, Olson RK (2001) Genetic and environmental influences on orthographic and phonological skills in children with reading disabilities. Dev Neuropsychol 20(2):483–507

    Article  PubMed  Google Scholar 

  • Gayán J, Smith SD, Cherny SS, Cardon LR, Fulker DW, Brower AM et al (1999) Quantitative-trait locus for specific language and reading deficits on chromosome 6p. Am J Hum Genet 64(1):157–164

    Article  PubMed  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521

    Article  PubMed  Google Scholar 

  • Grigorenko EL, Wood FB, Meyer MS, Pauls DL (2000) Chromosome 6p influences on different dyslexia-related cognitive processes: further confirmation. Am J Hum Genet 66(2):715–723

    Article  PubMed  Google Scholar 

  • Hirunsatit R, George ED, Lipska BK, Elwafi HM, Sander L, Yrigollen CM, Gelernter J, Grigorenko EL, Lappalainen J, Mane S, Nairn AC, Kleinman JE, Simen AA (2009) Twenty-one-base-pair insertion polymorphism creates an enhancer element and potentiates SLC6A1 GABA transporter promoter activity. Pharmacogenet Genomics 19(1):53–65

    Article  PubMed  Google Scholar 

  • Jin ZG, Liu L, Zhong H, Zhang KJ, Chen YF, Bian W, Cheng LP, Jing NH (2006) Second intron of mouse nestin gene directs its expression in pluripotent embryonic carcinoma cells through POU factor binding site. Acta Biochim Biophys Sin 38(3):207–212

    Article  PubMed  Google Scholar 

  • Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94(2):253–262

    Article  PubMed  Google Scholar 

  • Katusic SK, Colligan RC, Barbaresi WJ, Schaid DJ, Jacobsen SJ (2001) Incidence of reading disability in a population-based birth cohort, 1976–1982, Rochester, Minn. Mayo Clin Proc 76(11):1081–1092

    Article  PubMed  Google Scholar 

  • Lind PA, Luciano M, Wright MJ, Montgomery GW, Martin NG, Bates TC (2010) Dyslexia and DCDC2: normal variation in reading and spelling is associated with DCDC2 polymorphisms in an Australian population sample. Eur J Hum Genet [Epub ahead of print]

  • Lu C, Li Y, Zhao Y, Xing G, Tang F, Wang Q, Sun Y, Wei H, Yang X, Wu C, Chen J, Guan KL, Zhang C, Chen H, He F (2002) Intracrine hepatopoietin potentiates AP-1 activity through JAB1 independent of MAPK pathway. FASEB J 16(1):90–92

    PubMed  Google Scholar 

  • Ludwig KU, Schumacher J, Schulte-Korne G, Konig IR, Warnke A, Plume E et al (2008) Investigation of the DCDC2 intron 2 deletion/compound short tandem repeat polymorphism in a large German dyslexia sample. Psychiatr Genet 18(6):310–312

    Article  PubMed  Google Scholar 

  • Meng H, Smith SD, Hager K, Held M, Liu J, Olson RK et al (2005) DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci USA 102(47):17053–17058

    Article  PubMed  Google Scholar 

  • Paracchini S, Thomas A, Castro S, Lai C, Paramasivam M, Wang Y et al (2006) The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Hum Mol Genet 15(10):1659–1666

    Article  PubMed  Google Scholar 

  • Schumacher J, Anthoni H, Dahdouh F, Konig IR, Hillmer AM, Kluck N et al (2006) Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. Am J Hum Genet 78(1):52–62

    Article  PubMed  Google Scholar 

  • Shaywitz SE, Shaywitz BA, Fletcher JM, Escobar MD (1990) Prevalence of reading disability in boys and girls. Results of the Connecticut Longitudinal Study. JAMA 264(8):998–1002

    Article  PubMed  Google Scholar 

  • Taylor KR, Holzer AK, Bazan JF, Walsh CA, Gleeson JG (2000) Patient mutations in doublecortin define a repeated tubulin-binding domain. J Biol Chem 275:34442–34450

    Article  PubMed  Google Scholar 

  • Wilcke A, Weissfuss J, Kirsten H, Wolfram G, Boltze J, Ahnert P (2009) The role of gene DCDC2 in German dyslexics. Ann Dyslexia 59(1):1–11

    Article  PubMed  Google Scholar 

  • Wu KK (2006) Analysis of protein-DNA binding by streptavidin-agarose pulldown. In: Bina M (ed) Methods in molecular biology, vol 338: gene mapping, discovery, and expression: methods and protocols. Humana Press, Inc, Totowa, NJ, pp 281–290

    Google Scholar 

Download references

Acknowledgments

This study was supported by the International Dyslexia Association (R07420 to H.M.), and National Institutes of Health/National Institute of Neurological Disorders and Stroke (R01 NS43530 to J.R.G.). The authors thank Dr. Satish Ghatpandle for kindly providing the cell lines, Dr. Patrick G. Gallagher for scientific suggestions, and Dr. Seiyu Hosono, Dr. Zhi-jia Ye, Dr. Queenie Tan, and Dr. Rong Cong for technical assistance. We also thank Susan Chan for editing the manuscript.

Financial Disclosures

This manuscript describes the characterization of an enhancer element in DCDC2. Yale University has applied for a patent covering this element; authors Jeffrey Gruen and Haiying Meng are inventors on this patent. Furthermore, the patent rights have been licensed to a start-up company founded by Dr. Gruen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Gruen.

Additional information

Edited by Elena Grigorenko and Brett Miller.

H. Meng and N. R. Powers contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, H., Powers, N.R., Tang, L. et al. A Dyslexia-Associated Variant in DCDC2 Changes Gene Expression. Behav Genet 41, 58–66 (2011). https://doi.org/10.1007/s10519-010-9408-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-010-9408-3

Keywords

Navigation