Skip to main content
Log in

Mutations and novel polymorphisms in coding regions and UTRs of CDK5R1 and OMG genes in patients with non-syndromic mental retardation

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Mental retardation (MR) is displayed by 57% of NF1 patients with microdeletion syndrome as a result of 17q11.2 region haploinsufficiency. We considered the cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) and oligodendrocyte-myelin glycoprotein (OMG) genes, mapping in the NF1 microdeleted region, as candidate genes for MR susceptibility. CDK5R1 encodes for a neurone-specific activator of cyclin-dependent kinase 5 (CDK5) involved in neuronal migration during central nervous system development. OMG encodes for an inhibitor of neurite outgrowth by the binding to the Nogo-66 receptor (RTN4R). CDK5R1 and OMG genes are characterized by large 3′ and 5′ untranslated regions (UTRs), where we predict the presence of several transcription/translation regulatory elements. We screened 100 unrelated Italian patients affected by unspecific MR for mutations in CDK5R1 and OMG coding regions and in their 3′ or 5′ UTRs. Four novel mutations and two novel polymorphisms for CDK5R1 and three novel mutations for OMG were detected, including two missense changes (c.323C>T; A108V in CDK5R1 and c.1222A>G; T408A in OMG), one synonymous codon variant (c.532C>T; L178L in CDK5R1), four variants in CDK5R1 3′UTR and two changes in OMG 5′UTR. All the mutations were absent in 370 chromosomes from normal subjects. The allelic frequencies of the two novel polymorphisms in CDK5R1 3′UTR were established in both 185 normal and 100 mentally retarded subjects. Prediction of mRNA and protein secondary structures revealed that two changes lead to putative structural alterations in the mutated c.2254C>G CDK5R1 3′UTR and in OMG T408A gene product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Molinari F, Rio M, Meskenaite V, Encha-Razavi F, Auge J, Bacq D, Briault S, Vekemans M, Munnich A, Attie-Bitach T, Sonderegger P, Colleaux L (2002) Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science 298:1779–1781

    Article  PubMed  CAS  Google Scholar 

  2. Higgins JJ, Pucilowska J, Lombardi RQ, Rooney JP (2004) A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 63:1927–1931

    PubMed  CAS  Google Scholar 

  3. Venturin M, Guarnieri P, Natacci F, Stabile M, Tenconi R, Clementi M, Hernandez C, Thompson P, Upadhyaya M, Larizza L, Riva P (2004) Mental retardation and cardiovascular malformations in NF1 microdeleted patients point to candidate genes in 17q11.2. J Med Genet 41:35–41

    Article  PubMed  CAS  Google Scholar 

  4. Gupta A, Tsai LH (2003) Cyclin-dependent kinase 5 and neuronal migration in the neocortex. Neurosignals 12:173–179

    Article  PubMed  CAS  Google Scholar 

  5. Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, displays cortical lamination defects, seizures, and adult lethality. Neuron 18:29–42

    Article  PubMed  CAS  Google Scholar 

  6. Kwon YT, Tsai LH (1998) A novel disruption of cortical development in p35(–/–) mice distinct from reeler. J Comp Neurol 395:510–522

    Article  PubMed  CAS  Google Scholar 

  7. Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E, Tsai LH (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21:6758–6771

    PubMed  CAS  Google Scholar 

  8. Namgung U, Choi BH, Park S, Lee JU, Seo HS, Suh BC, Kim KT (2004) Activation of cyclin-dependent kinase 5 is involved in axonal regeneration. Mol Cell Neurosci 25:422–432

    Article  PubMed  CAS  Google Scholar 

  9. Li BS, Zhang L, Takahashi S, Ma W, Jaffe H, Kulkarni AB, Pant HC (2002) Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J 21:324–333

    Article  PubMed  CAS  Google Scholar 

  10. Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J (2002) Cyclin-dependent kinase 5 is required for associative learning. J Neurosci 22:700–707

    Google Scholar 

  11. Cheng K, Ip NY (2003) Cdk5: a new player at synapses. Neurosignals 4–5:180–190

    Article  CAS  Google Scholar 

  12. Paglini G, Peris L, Diez-Guerra J, Quiroga S, Caceres A (2001) The Cdk5–p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep 2:1139–1144

    Article  PubMed  CAS  Google Scholar 

  13. Lau LF, Ahlijanian MK (2003) Role of cdk5 in the pathogenesis of Alzheimer’s disease. Neurosignals 12:209–214

    Article  PubMed  CAS  Google Scholar 

  14. Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, MountMP, O’Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:13650–13655

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen MD, Julien JP (2003) Cyclin-dependent kinase 5 in amyotrophic lateral sclerosis. Neurosignals 12:215–220

    Article  PubMed  CAS  Google Scholar 

  16. Ruggiero T, Olivero M, Follenzi A, Naldini L, Calogero R, Di Renzo MF (2003) Deletion in a (T)8 microsatellite abrogates expression regulation by 3′-UTR. Nucleic Acids Res 31:6561–6569

    Article  PubMed  CAS  Google Scholar 

  17. van der Velden AW, Thomas AA (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31:87–106

    Article  PubMed  Google Scholar 

  18. Jansen RP (2001) mRNA localization: message on the move. Nat Rev Mol Cell Biol 2:247–256

    Article  PubMed  CAS  Google Scholar 

  19. Bashirullah A, Cooperstock RL, Lipshitz HD (2001) Spatial and temporal control of RNA stability. Proc Natl Acad Sci U S A 98:7025–7028

    Article  PubMed  CAS  Google Scholar 

  20. Conne B, Stutz A, Vassalli JD (2000) The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med 6:637–641

    Article  PubMed  CAS  Google Scholar 

  21. Mazumder B, Seshadri V, Fox PL (2003) Translational control by the 3′-UTR: the ends specify the means. Trends Biochem Sci 28:91–98

    Article  PubMed  CAS  Google Scholar 

  22. Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417:941–944

    Article  PubMed  CAS  Google Scholar 

  23. Sinibaldi L, De Luca A, Bellacchio E, Conti E, Pasini A, Paloscia C, Spalletta G, Caltagirone C, Pizzuti A, Dallapiccola B (2004) Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Hum Mutat 24:534–535

    Article  PubMed  CAS  Google Scholar 

  24. Vourc’h P, Dessay S, Mbarek O, Marouillat Vedrine S, Muh JP, Andres C (2003) The oligodendrocyte-myelin glycoprotein gene is highly expressed during the late stages of myelination in the rat central nervous system. Brain Res Dev Brain Res 144:159–168

    Article  PubMed  CAS  Google Scholar 

  25. Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20:8635–8642

    Article  PubMed  CAS  Google Scholar 

  26. Luckasson R, Coulter DL, Polloway EA, Reiss S, Schalock RL, Snell ME, Spitalnik DM, Stark JA (1992) Mental retardation: definition, classification and systems of supports, 9th edn. American Association on Mental Retardation, Washington, DC

    Google Scholar 

  27. American Psychiatric Association (2000) Diagnostic and Statistical Manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  28. Williams CA, Lossie A, Driscoll D (2001) Angelman syndrome: mimicking conditions and phenotypes. Am J Med Genet 101:59–64

    Article  PubMed  CAS  Google Scholar 

  29. Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilagyi A, Banoczi Z, Hudecz F, Friedrich P (2004) On the sequential determinants of calpain cleavage. J Biol Chem 279:20775–20785

    Article  PubMed  CAS  Google Scholar 

  30. Kam R, Chen J, Blumcke I, Normann S, Fassunke J, Elger CE, Schramm J, Wiestler OD, Becker AJ (2004) The reelin pathway components disabled-1 and p35 in gangliogliomas—a mutation and expression analysis. Neuropathol Appl Neurobiol 30:225–232

    Article  PubMed  CAS  Google Scholar 

  31. Bevilacqua A, Ceriani MC, Capaccioli S, Nicolin A (2003) Post-transcriptional regulation of gene expression by degradation of messengerRNAs. J Cell Physiol 195:356–372

    Article  PubMed  CAS  Google Scholar 

  32. Lai EC, Posanoky JW (1997) The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 124:4847–4856

    PubMed  CAS  Google Scholar 

  33. Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila MicroRNA targets. PLoS Biol 1:E60

    Article  PubMed  Google Scholar 

  34. Lai EC, Tam B, Rubin GM (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19:1067–1080

    Article  PubMed  CAS  Google Scholar 

  35. Vourc’h P, Moreau T, Arbion F, Marouillat-Vedrine S, Muh JP, Andres C (2003a) Oligodendrocyte myelin glycoprotein growth inhibition function requires its conserved leucine-rich repeat domain, not its glycosylphosphatidyl-inositolanchor. J Neurochem 85:889–897

    Article  PubMed  CAS  Google Scholar 

  36. Vourc’h P, Martin I, Marouillat S, Adrien JL, Barthelemy C, Moraine C, Muh JP, Andres C (2003b) Molecular analysis of the oligodendrocyte myelin glycoprotein gene in autistic disorder. Neurosci Lett 338:115–118

    Article  PubMed  CAS  Google Scholar 

  37. Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC (2004) Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697:143–153

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Graziano Pesole (Department of Biomolecular Sciences and Biotechnology, University of Milan) for his helpful suggestions on UTR regulatory elements searching, Elena Gismano and Rosina Paterra fo their technical support. This work was supported by FIRST to PR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Riva.

Additional information

M. Venturin and S. Moncini equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venturin, M., Moncini, S., Villa, V. et al. Mutations and novel polymorphisms in coding regions and UTRs of CDK5R1 and OMG genes in patients with non-syndromic mental retardation. Neurogenetics 7, 59–66 (2006). https://doi.org/10.1007/s10048-005-0026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-005-0026-9

Keywords

Navigation