Skip to main content

Advertisement

Log in

Measurement of serum hepcidin-25 levels as a potential test for diagnosing hemochromatosis and related disorders

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Iron overload syndromes include a wide spectrum of genetic and acquired conditions. Recent studies suggest suppressed hepcidin synthesis in the liver to be the molecular basis of hemochromatosis. However, a liver with acquired iron overload synthesizes an adequate amount of hepcidin. Thus, hepcidin could function as a biochemical marker for differential diagnosis of iron overload syndromes.

Methods

We measured serum iron parameters and hepcidin-25 levels followed by sequencing HFE, HJV, HAMP, TFR2, and SLC40A1 genes in 13 Japanese patients with iron overload syndromes. In addition, we performed direct measurement of serum hepcidin-25 levels using liquid chromatography–tandem mass spectrometry in 3 Japanese patients with aceruloplasminemia and 4 Italians with HFE hemochromatosis.

Results

One patient with HJV hemochromatosis, 2 with TFR2 hemochromatosis, and 3 with ferroportin disease were found among the 13 Japanese patients. The remaining 7 Japanese patients showed no evidence for genetic basis of iron overload syndrome. As far as the serum hepcidin-25 was concerned, seven patients with hemochromatosis and 3 with aceruloplasminemia showed markedly decreased serum hepcidin-25 levels. In contrast, 3 patients with ferroportin disease and 7 with secondary iron overload syndromes showed serum hepcidin levels parallel to their hyperferritinemia. Patients with iron overload syndromes were divided into 2 phenotypes presenting as low and high hepcidinemia. These were then associated with their genotypes.

Conclusion

Determining serum hepcidin-25 levels may aid differential diagnosis of iron overload syndromes prior to genetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Pierre Brissot, Antonello Pietrangelo, … Olivier Loréal

References

  1. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.

    Article  CAS  PubMed  Google Scholar 

  2. Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dubé MP, et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet. 2004;36:77–82.

    Article  CAS  PubMed  Google Scholar 

  3. Roetto A, Papanikolaou G, Politou M, Alberti F, Girelli D, Christakis J, et al. Mutant antimicrobial hepcidin is associated with severe juvenile hemochromatosis. Nat Genet. 2003;33:21–2.

    Article  CAS  PubMed  Google Scholar 

  4. Camaschella C, Roetto A, Cali A, De Gobbi M, Garozzo G, Carella M, et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet. 2000;25:14–5.

    Article  CAS  PubMed  Google Scholar 

  5. Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480:147–50.

    Article  CAS  PubMed  Google Scholar 

  6. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276:7806–10.

    Article  CAS  PubMed  Google Scholar 

  7. Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A. 2001;98:8780–5.

    Article  CAS  PubMed  Google Scholar 

  8. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276:7811–9.

    Article  CAS  PubMed  Google Scholar 

  9. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.

    Article  CAS  PubMed  Google Scholar 

  10. Nemeth E, Valore EV, Territo M, et al. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101:2461–3.

    Article  CAS  PubMed  Google Scholar 

  11. Pak M, Lopez MA, Gabayan V, Ganz T, Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108:3730–5.

    Article  CAS  PubMed  Google Scholar 

  12. Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homeostasis. Lancet. 2003;361:669–73.

    Article  CAS  PubMed  Google Scholar 

  13. Papanikolaou G, Tzilianos M, Christakis JI, Bogdanos D, Tsimirika K, MacFarlane J, et al. Hepcidin in iron overload disorders. Blood. 2005;105:4103–5.

    Article  CAS  PubMed  Google Scholar 

  14. Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C. Hepcidin is decreased in TFR2 hemochromatosis. Blood. 2005;105:1803–6.

    Article  CAS  PubMed  Google Scholar 

  15. Fujita N, Sugimoto R, Motonishi S, Tomosugi N, Tanaka H. Patients with chronic hepatitis C achieving a sustained virological response to peginterferon and ribavirin therapy recover from impaired hepacidin secretion. J Hepatol. 2008;49:702–10.

    Article  CAS  PubMed  Google Scholar 

  16. van Dijk BA, Laarakkers CM, Klaver SM, Jacobs EM, van Tits LJ, Janssen MC, et al. Serum hepcidin levels are innately low in HFE-related haemochromatosis but differ between C282Y-homozygotes with elevated and normal ferritin levels. Br J Haematol. 2008;142(6):979–85.

    Article  PubMed  Google Scholar 

  17. Girelli D, Pasino M, Goodnough JB, Nemeth E, Guido M, Castagna A, et al. Reduced serum hepcidin levels in patients with chronic hepatitis C. J Hepatol. 2009;51:845–52.

    Article  CAS  PubMed  Google Scholar 

  18. Miyajima H, Nishimura Y, Mizoguchi K, Sakamoto M, Shimizu T, Honda N. Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology. 1987;37:761–7.

    CAS  PubMed  Google Scholar 

  19. Harris ZL, Takahashi Y, Miyajima H, Serizawa M, MacGillivray RTA, Gitlin JD. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci U S A. 1995;92:2539–43.

    Article  CAS  PubMed  Google Scholar 

  20. de Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmine. EMBO J. 2007;26:2823–31.

    Article  PubMed  Google Scholar 

  21. Njajou OT, Vaessen N, Joosse M, Berghuis B, van Dongen JW, Breuning MH, et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat Genet. 2001;28:213–4.

    Article  CAS  PubMed  Google Scholar 

  22. Montosi G, Donovan A, Totaro A, Garuti C, Pignatti E, Cassanelli S, et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Investig. 2001;108:619–23.

    CAS  PubMed  Google Scholar 

  23. Jouanolle AM, Douabin-Gicquel V, Halimi C, Loreal O, Fergelot P, Delacour T, et al. Novel mutation in ferroportin 1 gene is associated with autosomal dominant iron overload. J Hepatol. 2003;39:286–9.

    Article  CAS  PubMed  Google Scholar 

  24. Beutler E, Barton JC, Felitti VJ, Gelbart T, West C, Lee PL, et al. Ferroportin 1 (SCL40A1) variant associated with iron overload in African-Americans. Blood Cells Mol Dis. 2003;31:305–9.

    Article  CAS  PubMed  Google Scholar 

  25. Koyama C, Wakusawa S, Hayashi H, Ueno T, Suzuki R, Yano M, et al. A Japanese family with ferroportin disease caused by a novel mutation of SLC40A1 gene: hyperferritinemia associated with a relatively low transferrin saturation of iron. Intern Med. 2005;44:990–3.

    Article  PubMed  Google Scholar 

  26. Rivard SR, Lanzara C, Grimard D, Carella M, Simard H, Ficarella R, et al. Autosomal dominant reticuloendothelial iron overload (HFE type 4) due to a new missense mutation in the FERROPORTIN 1 gene (SLC11A3) in a large French-Canadian family. Haematologica. 2003;88:824–6.

    CAS  PubMed  Google Scholar 

  27. Zoller H, McFarlane I, Theurl I, Stadlmann S, Nemeth E, Oxley D, et al. Primary iron overload with inappropriate hepcidin expression in V162del ferroportin disease. Hepatology. 2005;42:2–466.

    Article  Google Scholar 

  28. Cemonesi L, Forni GL, Soriani N, Lamagna M, Fermo I, Daraio F, et al. Genetic and clinical heterogeneity of ferroportin disease. Br J Haematol. 2005;131:663–70.

    Article  PubMed  Google Scholar 

  29. Kalantar-Zadeh K, Kalantar-Zadeh K, Lee GH. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? Clin J Am Soc Nephrol. 2006;1(Suppl 1):S9–18.

    Article  CAS  PubMed  Google Scholar 

  30. Bonkovsky H, Banner BF, Rothman AL. Iron and chronic viral hepatitis. Hepatology. 1997;25:759–68.

    Article  CAS  PubMed  Google Scholar 

  31. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J. Iron overload and cofactors with special reference to alcohol, hepatitis C virus infection and steatosis/insulin resistance. World J Gastroenterol. 2007;13:4699–707.

    CAS  PubMed  Google Scholar 

  32. Hunter HN, Fulton DB, Ganz T, Vogel HJ. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem. 2002;277:37597–603.

    Article  CAS  PubMed  Google Scholar 

  33. Koyama C, Wakusawa S, Hayashi H, Suzuki R, Yano M, Yoshioka K, et al. Two novel mutations, L490R and V561X, in the transferrin receptor 2 in Japanese patients with hemochromatosis. Haematologica. 2005;90:302–7.

    CAS  PubMed  Google Scholar 

  34. Koyama C, Hayashi H, Wakusawa S, Ueno T, Yano M, Katano Y, et al. Three patients with middle-age-onset hemochromatosis caused by novel mutations in the hemojuvelin gene. J Hepatol. 2005;43:740–2.

    Article  CAS  PubMed  Google Scholar 

  35. Murao N, Ishigai M, Yasuno H, Shimonaka Y, Aso Y. Simple and sensitive quantification of bioactive peptides in biological matrices using liquid chromatography/selected reaction monitoring mass spectrometry coupled with trichloroacetic acid clean-up. Rapid Commun Mass Spectrom. 2007;21:4033–8.

    Article  CAS  PubMed  Google Scholar 

  36. Murphy AT, Witcher DR, Luan P, Wroblewski VJ. Quantitation of hepcidin from human and mouse serum using liquid chromatography tandem mass spectrometry. Blood. 2007;110:1048–54.

    Article  CAS  PubMed  Google Scholar 

  37. Kanda J, Mizumoto C, Kawabata H, Tsuchida H, Tomosugi N, Matsuo K, et al. Serum hepcidin level and erythropoietic activity after hematopoietic stem cell transplantation. Haematologica. 2008;93:1550–4.

    Article  CAS  PubMed  Google Scholar 

  38. Merryweather-Clarke AT, Pointon JJ, Shearman JD, Robson KJ. Global prevalence of putative haemochromatosis mutations. J Med Genet. 1997;34:275–8.

    Article  CAS  PubMed  Google Scholar 

  39. Lok CY, Merryweather-Clarke AT, Viprakasit V, Chinthammitr Y, Srichairatanakool S, Limwongse C, et al. Iron overload in the Asian community. Blood. 2009;114(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  40. Guo P, Cui R, Chang YZ, Wu WS, Qian ZM. Hepcidin, an antimicrobial peptide is down regulated in ceruloplasmin-deficient mice. Peptides. 2009;30:262–6.

    Article  CAS  PubMed  Google Scholar 

  41. Johnson MB, Enns CA. Diferric transferrin regulates transferrin receptor 2 protein stability. Blood. 2004;104:4287–93.

    Article  CAS  PubMed  Google Scholar 

  42. Robb A, Wessling-Resnick M. Regulation of transferrin receptor 2 protein levels by transferrin. Blood. 2004;104:4294–9.

    Article  CAS  PubMed  Google Scholar 

  43. De Domenico I, Ward DM, Nemeth E, Vaughn MB, Musci G, Ganz T, et al. The molecular basis of ferroportin-linked hemochromatosis. Proc Natl Acad Sci U S A. 2005;102(25):8955–60.

    Article  PubMed  Google Scholar 

  44. Drakesmith H, Schimanski LM, Ormerod E, Merryweather-Clarke AT, Viprakasit V, Edwards JP, et al. Resistance to hepcidin is conferred by hemochromatosis-associated mutations of ferroportin. Blood. 2005;106(3):1092–7.

    Article  CAS  PubMed  Google Scholar 

  45. Schimanski LM, Drakesmith H, Merryweather-Clarke AT, Viprakasit V, Edwards JP, Sweetland E, et al. In vitro functional analysis of human ferroportin (FPN) and hemochromatosis-associated FPN mutations. Blood. 2005;105(10):4096–102.

    Article  CAS  PubMed  Google Scholar 

  46. Aoki CA, Rossaro L, Ramsamooj R, Brandhagen D, Burritt MF, Bowlus CL. Liver hepatic mRNA correlates with iron stores, but not inflammation, in patients with chronic hepatitis C. J Clin Gastroenterol. 2005;39:71–4.

    PubMed  Google Scholar 

  47. Lin TJ, Liao LY, Chou JM, Liu SO, Wang CK. Serum prohepcidin levels correlate with hepatic iron stores in chronic hepatitis C patients. Hepatogastroenterology. 2009;56:1146–51.

    CAS  PubMed  Google Scholar 

  48. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008;112:4292–7.

    Article  CAS  PubMed  Google Scholar 

  49. Mariani R, Arosio C, Pelucchi S, Grisoli M, Piga A, Trombini P, et al. Iron chelation therapy in aceruloplasminaemia: study of a patient with a novel missense mutation. Gut. 2004;53:756–8.

    Article  CAS  PubMed  Google Scholar 

  50. Hattori A, Wakusawa S, Hayashi H, Harashima A, Sanae F, Kawanaka M, et al. AVAQ 594–597 deletion of the TFR2 gene in a Japanese family with hemochromatosis. Hepatol Res. 2003;26:154–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshibumi Kaneko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko, Y., Miyajima, H., Piperno, A. et al. Measurement of serum hepcidin-25 levels as a potential test for diagnosing hemochromatosis and related disorders. J Gastroenterol 45, 1163–1171 (2010). https://doi.org/10.1007/s00535-010-0259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-010-0259-8

Keywords

Navigation