Skip to main content

Advertisement

Log in

The SLC26 gene family of multifunctional anion exchangers

  • The ABC of Solute Carriers
  • Guest Editor: Matthias A. Hediger
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The ten-member SLC26 gene family encodes anion exchangers capable of transporting a wide variety of monovalent and divalent anions. The physiological role(s) of individual paralogs is evidently due to variation in both anion specificity and expression pattern. Three members of the gene family are involved in genetic disease; SLC26A2 in chondrodysplasias, SLC26A3 in chloride-losing diarrhea, and SLC26A4 in Pendred syndrome and hereditary deafness (DFNB4). The analysis of Slc26a4-null mice has significantly enhanced the understanding of the roles of this gene in both health and disease. Targeted deletion of Slc26a5 has in turn revealed that this paralog is essential for electromotor activity of cochlear outer hair cells and thus for cochlear amplification. Anions transported by the SLC26 family, with variable specificity, include the chloride, sulfate, bicarbonate, formate, oxalate and hydroxyl ions. The functional versatility of SLC26A6 identifies it as the primary candidate for the apical Cl-formate/oxalate and Cl-base exchanger of brush border membranes in the renal proximal tubule, with a central role in the reabsorption of Na+-Cl from the glomerular ultrafiltrate. At least three of the SLC26 exchangers mediate electrogenic Cl-HCO3 and Cl-OH exchange; the stoichiometry of Cl-HCO3 exchange appears to differ between SLC26 paralogs, such that SLC26A3 transports ≥2 Cl ions per HCO3 ion, whereas SLC26A6 transports ≥2 HCO3 ions per Cl ion. SLC26 Cl-HCO3 and Cl-OH exchange is activated by the cystic fibrosis transmembrane regulator (CFTR), implicating defective regulation of these exchangers in the reduced HCO3 transport seen in cystic fibrosis and related disorders; CFTR-independent activation of these exchangers is thus an important and novel goal for the future therapy of cystic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A, B.
Fig. 5.

Similar content being viewed by others

References:

  1. Ahn W, Kim KH, Lee JA, Kim JY, Choi JY, Moe OW, Milgram SL, Muallem S, Lee MG (2001) Regulatory interaction between the cystic fibrosis transmembrane conductance regulator and HCO3 salvage mechanisms in model systems and the mouse pancreatic duct. J Biol Chem 276:17236–17243

    CAS  PubMed  Google Scholar 

  2. Alper SL, Chernova MN, Stewart AK (2001) Regulation of Na+-independent Cl/HCO3 exchangers by pH. J Pancreas 2:171–175

    CAS  Google Scholar 

  3. Aravind L, Koonin EV (2000) The STAS domain—a link between anion transporters and antisigma- factor antagonists. Curr Biol 10:R53–5

    Article  CAS  PubMed  Google Scholar 

  4. Ballhausen D, Bonafe L, Terhal P, Unger SL, Bellus G, Classen M, Hamel BC, Spranger J, Zabel B, Cohn DH, et al (2003) Recessive multiple epiphyseal dysplasia (rMED): phenotype delineation in eighteen homozygotes for DTDST mutation R279W. J Med Genet 40:65–71

    Article  CAS  PubMed  Google Scholar 

  5. Bidart JM, Lacroix L, Evain-Brion D, Caillou B, Lazar V, Frydman R, Bellet D, Filetti S, Schlumberger M (2000) Expression of Na+/I symporter and Pendred syndrome genes in trophoblast cells. J Clin Endocrinol Metab 85:4367–4372

    CAS  PubMed  Google Scholar 

  6. Bissig M, Hagenbuch B, Stieger B, Koller T, Meier PJ (1994) Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem 269:3017–3021

    CAS  PubMed  Google Scholar 

  7. Byeon MK, Westerman MA, Maroulakou IG, Henderson KW, Suster S, Zhang XK, Papas TS, Vesely J, Willingham MC, Green JE, et al (1996) The down-regulated in adenoma (DRA) gene encodes an intestine-specific membrane glycoprotein. Oncogene 12:387–396

    CAS  PubMed  Google Scholar 

  8. Byeon MK, Frankel A, Papas TS, Henderson KW, Schweinfest CW (1998) Human DRA functions as a sulfate transporter in Sf9 insect cells. Protein Expr Purif 12:67–74

    Article  CAS  PubMed  Google Scholar 

  9. Cavet ME, West M, Simmons NL (1997) Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells. Br J Pharmacol 121:1567–1578

    CAS  PubMed  Google Scholar 

  10. Chapman JM, Knoepp SM, Byeon MK, Henderson KW, Schweinfest CW (2002) The colon anion transporter, down-regulated in adenoma, induces growth suppression that is abrogated by E1A. Cancer Res 62:5083–5088

    CAS  PubMed  Google Scholar 

  11. Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145:627–635

    PubMed  Google Scholar 

  12. Chernova MN, Jiang L, Crest M, Hand M, Vandorpe DH, Strange K, Alper SL (1997) Electrogenic sulfate/chloride exchange in Xenopus oocytes mediated by murine AE1 E699Q. J Gen Physiol 109:345–360

    Article  CAS  PubMed  Google Scholar 

  13. Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, Baum M (2000) Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest 105:1141–1146

    CAS  PubMed  Google Scholar 

  14. Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S (2001) Aberrant CFTR-dependent HCO3 transport in mutations associated with cystic fibrosis. Nature 410:94–97

    Article  CAS  PubMed  Google Scholar 

  15. Cohn MJ, Izpisua-Belmonte JC, Abud H, Heath JK, Tickle C (1995) Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80:739–746

    CAS  PubMed  Google Scholar 

  16. Conners BW (2002) Sensory transduction. In: Boron WF, Boulpaep EL (eds) Medical physiology: a cellular and molecular approach. Saunders, Philadelphia, PA, pp 325–358

  17. Coyle B, Coffey R, Armour JA, Gausden E, Hochberg Z, Grossman A, Britton K, Pembrey M, Reardon W, Trembath R (1996) Pendred syndrome (goitre and sensorineural hearing loss) maps to chromosome 7 in the region containing the nonsyndromic deafness gene DFNB4. Nat Genet 12:421–423

    CAS  PubMed  Google Scholar 

  18. Coyle B, Reardon W, Herbrick JA, Tsui LC, Gausden E, Lee J, Coffey R, Grueters A, Grossman A, Phelps PD, et al (1998) Molecular analysis of the PDS gene in Pendred syndrome. Hum Mol Genet 7:1105–1112

    Article  CAS  PubMed  Google Scholar 

  19. Emmons C (1999) Transport characteristics of the apical anion exchanger of rabbit cortical collecting duct beta-cells. Am J Physiol 276:F635–643

    CAS  PubMed  Google Scholar 

  20. Everett LA, Green ED (1999) A family of mammalian anion transporters and their involvement in human genetic diseases. Hum Mol Genet 8:1883–1891

    Article  CAS  PubMed  Google Scholar 

  21. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, et al (1997) Pendred syndrome is caused by mutations in a putative sulfate transporter gene (PDS). Nat Genet 17:411–422

    CAS  PubMed  Google Scholar 

  22. Everett LA, Morsli H, Wu DK, Green ED (1999) Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci USA 96:9727–9732

    Article  CAS  Google Scholar 

  23. Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161

    Article  CAS  PubMed  Google Scholar 

  24. Goyal S, Aronson PS (2002) Identification and Cloning of a Novel NHE Isoform Expressed in the Kidney. FASEB J 16:a53

    Google Scholar 

  25. Greeley T, Shumaker H, Wang Z, Schweinfest CW, Soleimani M (2001) Downregulated in adenoma and putative anion transporter are regulated by CFTR in cultured pancreatic duct cells. Am J Physiol 281:G1301–1308

    CAS  Google Scholar 

  26. Haila S, Hastbacka J, Bohling T, Karjalainen-Lindsberg ML, Kere J, Saarialho-Kere U (2001) Slc26a2 (diastrophic dysplasia sulfate transporter) is expressed in developing and mature cartilage but also in other tissues and cell types. J Histochem Cytochem 49:973–982

    CAS  PubMed  Google Scholar 

  27. Hastbacka J, Chapelle A de la, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A, et al (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78:1073–1087

    CAS  PubMed  Google Scholar 

  28. Hastbacka J, Superti-Furga A, Wilcox WR, Rimoin DL, Cohn DH, Lander ES (1996) Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am J Hum Genet 58:255–262

    CAS  PubMed  Google Scholar 

  29. Hawkesford MJ (2003) Transporter gene families in plants: the sulfate transporter gene family—redundancy or specialization? Physiol Plant 117:155–163

    Google Scholar 

  30. Hemminki A, Hoglund P, Pukkala E, Salovaara R, Jarvinen H, Norio R, Aaltonen LA (1998) Intestinal cancer in patients with a germline mutation in the down-regulated in adenoma (DRA) gene. Oncogene 16:681–684

    Article  CAS  PubMed  Google Scholar 

  31. Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, Chapelle A de la, Kere J (1996) Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14:316–319

    PubMed  Google Scholar 

  32. Hoglund P, Holmberg C, Sherman P, Kere J (2001) Distinct outcomes of chloride diarrhoea in two siblings with identical genetic background of the disease: implications for early diagnosis and treatment. Gut 48:724–727

    Article  PubMed  Google Scholar 

  33. Holmes RP, Goodman HO, Assimos DG (2001) Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int 59:270–276

    Article  CAS  PubMed  Google Scholar 

  34. Jacob P, Rossmann H, Lamprecht G, Kretz A, Neff C, Lin-Wu E, Gregor M, Groneberg DA, Kere J, Seidler U (2002) Down-regulated in adenoma mediates apical Cl/HCO3 exchange in rabbit, rat, and human duodenum. Gastroenterology 122:709–724

    CAS  PubMed  Google Scholar 

  35. Jiang Z, Grichtchenko, II, Boron WF, Aronson PS (2002) Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem 277:33963–33967

    Article  CAS  PubMed  Google Scholar 

  36. Karniski LP (2001) Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: correlation between sulfate transport activity and chondrodysplasia phenotype. Hum Mol Genet 10:1485–1490

    Article  CAS  PubMed  Google Scholar 

  37. Karniski LP, Aronson PS (1987) Anion exchange pathways for Cl transport in rabbit renal microvillus membranes. Am J Physiol 253:F513–521

    CAS  PubMed  Google Scholar 

  38. Karniski LP, Lotscher M, Fucentese M, Hilfiker H, Biber J, Murer H (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol 275:F79–87

    CAS  Google Scholar 

  39. Karniski LP, Wang T, Everett LA, Green ED, Giebisch G, Aronson PS (2002) Formate-stimulated NaCl absorption in the proximal tubule is independent of the pendrin protein. Am J Physiol 283:F952–956

    Google Scholar 

  40. Khurana OK, Coupland LA, Shelden MC, Howitt SM (2000) Homologous mutations in two diverse sulfate transporters have similar effects. FEBS Lett 477:118–122

    Article  CAS  PubMed  Google Scholar 

  41. Kim YH, Kwon TH, Frische S, Kim J, Tisher CC, Madsen KM, Nielsen S (2002) Immunocytochemical localization of Pendrin in intercalated cell subtypes in rat and mouse kidney. Am J Physiol 283:F744–754

    Google Scholar 

  42. Knauf F, Yang CL, Thomson RB, Mentone SA, Giebisch G, Aronson PS (2001) Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc Natl Acad Sci USA 98:9425–9430

    Article  CAS  Google Scholar 

  43. Knickelbein RG, Aronson PS, Dobbins JW (1986) Oxalate transport by anion exchange across rabbit ileal brush border. J Clin Invest 77:170–175

    CAS  PubMed  Google Scholar 

  44. Ko SBH, Shcheynikov N, Choi JY, Luo X, Ishibashi K, Thomas PJ, Kim JY, Kim KH, Lee MG, Naurse S, et al (2002) A molecular mechanism for aberrant CFTR-dependent HCO3- transport in cystic fibrosis. EMBO J 21:5562–5572

    Article  Google Scholar 

  45. Kobayashi T, Sugimoto T, Saijoh K, Fukase M, Chihara K (1997) Cloning of mouse diastrophic dysplasia sulfate transporter gene induced during osteoblast differentiation by bone morphogenetic protein-2. Gene 198:341–349

    Article  PubMed  Google Scholar 

  46. Kuo SM, Aronson PS (1988) Oxalate transport via the sulfate/HCO3 exchanger in rabbit renal basolateral membrane vesicles. J Biol Chem 263:9710–9717

    CAS  PubMed  Google Scholar 

  47. Kurtz I, Nagami G, Yanagawa N, Li L, Emmons C, Lee I (1994) Mechanism of apical and basolateral Na(+)-independent Cl/base exchange in the rabbit superficial proximal straight tubule. J Clin Invest 94:173–183

    CAS  PubMed  Google Scholar 

  48. Lee A, Beck L, Markovich D (2003) The mouse sulfate anion transporter gene Sat1 (Slc26a1): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation thyroid hormone. DNA Cell Biol 22:19–31

    Article  CAS  PubMed  Google Scholar 

  49. Lee MG, Choi JY, Luo X, Strickland E, Thomas PJ, Muallem S (1999) Cystic fibrosis transmembrane conductance regulator regulates luminal Cl/HCO3 exchange in mouse submandibular and pancreatic ducts. J Biol Chem 274:14670–14676

    Article  CAS  PubMed  Google Scholar 

  50. Li XC, Everett LA, Lalwani AK, Desmukh D, Friedman TB, Green ED, Wilcox ER (1998) A mutation in PDS causes non-syndromic recessive deafness. Nat Genet 18:215–217

    CAS  PubMed  Google Scholar 

  51. Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304

    Article  CAS  PubMed  Google Scholar 

  52. Lohi H, Kujala M, Kerkela E, Saarialho-Kere U, Kestila M, Kere J (2000) Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics 70:102–112

    Article  CAS  PubMed  Google Scholar 

  53. Lohi H, Kujala M, Makela S, Lehtonen E, Kestila M, Saarialho-Kere U, Markovich D, Kere J (2002) Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J Biol Chem 277:14246–14254

    Article  CAS  PubMed  Google Scholar 

  54. Lohi H, Lamprecht G, Markovich D, Heil A, Kujala M, Seidler U, Kere J (2002) Isoforms of the anion exchanger SLC26A6 (PAT1) mediate chloride and sulfate transport and have functional PDZ interaction domains. Am J Physiol

  55. Makalowski W, Boguski MS (1998) Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc Natl Acad Sci USA 95:9407–9412

    Article  CAS  PubMed  Google Scholar 

  56. Makela S, Kere J, Holmberg C, Hoglund P (2002) SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat 20:425–438

    Article  CAS  PubMed  Google Scholar 

  57. Masmoudi S, Charfedine I, Hmani M, Grati M, Ghorbel AM, Elgaied-Boulila A, Drira M, Hardelin JP, Ayadi H (2000) Pendred syndrome: phenotypic variability in two families carrying the same PDS missense mutation. Am J Med Genet 90:38–44

    Article  CAS  PubMed  Google Scholar 

  58. Megarbane A, Haddad FA, Haddad-Zebouni S, Achram M, Eich G, Le Merrer M, Superti-Furga A (1999) Homozygosity for a novel DTDST mutation in a child with a 'broad bone-platyspondylic' variant of diastrophic dysplasia. Clin Genet 56:71–76

    Article  CAS  PubMed  Google Scholar 

  59. Meier PJ, Valantinas J, Hugentobler G, Rahm I (1987) Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles. Am J Physiol 253:G461–468

    CAS  PubMed  Google Scholar 

  60. Melvin JE, Park K, Richardson L, Schultheis PJ, Shull GE (1999) Mouse down-regulated in adenoma (DRA) is an intestinal Cl(-)/HCO(3)(-) exchanger and is up-regulated in colon of mice lacking the NHE3 Na(+)/H(+) exchanger. J Biol Chem 274:22855–22861

    Article  CAS  PubMed  Google Scholar 

  61. Moseley RH, Hoglund P, Wu GD, Silberg DG, Haila S, Chapelle A de la, Holmberg C, Kere J (1999) Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. Am J Physiol 276:G185–192

    CAS  Google Scholar 

  62. Ogihara T, Tamai I, Tsuji A (1999) Structural characterization of substrates for the anion exchange transporter in Caco-2 cells. J Pharmacol Sci 88:1217–1221

    Article  CAS  Google Scholar 

  63. Oliver D, He DZ, Klocker N, Ludwig J, Schulte U, Waldegger S, Ruppersberg JP, Dallos P, Fakler B (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343

    CAS  PubMed  Google Scholar 

  64. Perrimon N, Bernfield M (2000) Specificities of heparan sulfate proteoglycans in developmental processes. Nature 404:725–728

    Article  CAS  PubMed  Google Scholar 

  65. Peters TA, Tonnaer EL, Kuijpers W, Cremers CW, Curfs JH (2002) Differences in endolymphatic sac mitochondria-rich cells indicate specific functions. Laryngoscope 112:534–541

    PubMed  Google Scholar 

  66. Petrovic S, Wang Z, Ma L, Seidler U, Forte JG, Shull GE, Soleimani M (2002) Colocalization of the apical Cl/HCO3 exchanger PAT1 and gastric H-K-ATPase in stomach parietal cells. Am J Physiol 283:G1207–1216

    CAS  Google Scholar 

  67. Pritchard JB, Renfro JL (1983) Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc Natl Acad Sci USA 80:2603–2607

    CAS  Google Scholar 

  68. Rajendran VM, Black J, Ardito TA, Sangan P, Alper SL, Schweinfest C, Kashgarian M, Binder HJ (2000) Regulation of DRA and AE1 in rat colon by dietary Na depletion. Am J Physiol 279:G931–942

    CAS  Google Scholar 

  69. Reardon W, Coffey R, Chowdhury T, Grossman A, Jan H, Britton K, Kendall-Taylor P, Trembath R (1999) Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. J Med Genet 36:595–598

    CAS  PubMed  Google Scholar 

  70. Reardon W, Om CF, Trembath R, Jan H, Phelps PD (2000) Enlarged vestibular aqueduct: a radiological marker of Pendred syndrome, and mutation of the PDS gene. Q J Med 93:99–104

    CAS  Google Scholar 

  71. Renfro JL, Pritchard JB (1983) Sulfate transport by flounder renal tubule brush border: presence of anion exchange. Am J Physiol 244:F488–496

    CAS  PubMed  Google Scholar 

  72. Rillema JA, Hill MA (2003) Prolactin regulation of the pendrin-iodide transporter in the mammary gland. Am J Physiol 284:E25–28

    CAS  Google Scholar 

  73. Rossi A, Bonaventure J, Delezoide AL, Cetta G, Superti-Furga A (1996) Undersulfation of proteoglycans synthesized by chondrocytes from a patient with achondrogenesis type 1B homozygous for an L483P substitution in the diastrophic dysplasia sulfate transporter. J Biol Chem 271:18456–18464

    Article  CAS  PubMed  Google Scholar 

  74. Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141:839–845

    CAS  PubMed  Google Scholar 

  75. Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED (2001) Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci USA 98:4221–4226

    Article  CAS  PubMed  Google Scholar 

  76. Saier MH Jr, Eng BH, Fard S, Garg J, Haggerty DA, Hutchinson WJ, Jack DL, Lai EC, Liu HJ, Nusinew DP, et al (1999) Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1422:1–56

    CAS  PubMed  Google Scholar 

  77. Saleh AM, Rudnick H, Aronson PS (1996) Mechanism of H(+)-coupled formate transport in rabbit renal microvillus membranes. Am J Physiol 271:F401–407

    CAS  PubMed  Google Scholar 

  78. Satoh H, Susaki M, Shukunami C, Iyama K, Negoro T, Hiraki Y (1998) Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans. J Biol Chem 273:12307–12315

    Article  CAS  PubMed  Google Scholar 

  79. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, Riddle TM, Duffy JJ, Doetschman T, Wang T, et al (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19:282–285

    Google Scholar 

  80. Schweinfest CW, Henderson KW, Suster S, Kondoh N, Papas TS (1993) Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc Natl Acad Sci USA 90:4166–4170

    CAS  Google Scholar 

  81. Scott DA, Karniski LP (2000) Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange. Am J Physiol 278:C207–211

    CAS  Google Scholar 

  82. Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP (1999) The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 21:440–443

    Article  CAS  PubMed  Google Scholar 

  83. Scott DA, Wang R, Kreman TM, Andrews M, McDonald JM, Bishop JR, Smith RJ, Karniski LP, Sheffield VC (2000) Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Hum Mol Genet 9:1709–1715

    CAS  PubMed  Google Scholar 

  84. Sheffield VC, Kraiem Z, Beck JC, Nishimura D, Stone EM, Salameh M, Sadeh O, Glaser B (1996) Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet 12:424–426

    CAS  PubMed  Google Scholar 

  85. Shiang R, Thompson LM, Zhu YZ, Church DM, Fielder TJ, Bocian M, Winokur ST, Wasmuth JJ (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342

    CAS  PubMed  Google Scholar 

  86. Silberg DG, Wang W, Moseley RH, Traber PG (1995) The Down regulated in Adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. J Biol Chem 270:11897–11902

    Article  CAS  PubMed  Google Scholar 

  87. Soleimani M, Greeley T, Petrovic S, Wang Z, Amlal H, Kopp P, Burnham CE (2001) Pendrin: an apical Cl/OH/HCO3 exchanger in the kidney cortex. Am J Physiol 280:F356–364

    CAS  Google Scholar 

  88. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science. 275:73–77

    Google Scholar 

  89. Superti-Furga A, Hastbacka J, Wilcox WR, Cohn DH, Harten HJ van der, Rossi A, Blau N, Rimoin DL, Steinmann B, Lander ES, et al (1996) Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulfate transporter gene. Nat Genet 12:100–102

    CAS  PubMed  Google Scholar 

  90. Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JA, Engler G, Van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:11102–11107

    CAS  PubMed  Google Scholar 

  91. Taylor JP, Metcalfe RA, Watson PF, Weetman AP, Trembath RC (2002) Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. J Clin Endocrinol Metab 87:1778–1784

    CAS  PubMed  Google Scholar 

  92. Toure A, Morin L, Pineau C, Becq F, Dorseuil O, Gacon G (2001) Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. J Biol Chem 276:20309–20315

    Article  CAS  PubMed  Google Scholar 

  93. Van de Kamp M, Schuurs TA, Vos A, Lende TR van der, Konings WN, Driessen AJ (2000) Sulfur regulation of the sulfate transporter genes sutA and sutB in Penicillium chrysogenum. Appl Environ Microbiol 66:4536–4538

    Article  PubMed  Google Scholar 

  94. Vincourt JB, Jullien D, Amalric F, Girard JP (2003) Molecular and functional characterization of SLC26A11, a sodium-independent sulfate transporter from high endothelial venules. FASEB J

  95. Vincourt JB, Jullien D, Kossida S, Amalric F, Girard JP (2002) Molecular cloning of SLC26A7, a novel member of the SLC26 sulfate/anion transporter family, from high endothelial venules and kidney. Genomics 79:249–256

    Article  CAS  PubMed  Google Scholar 

  96. Visconti PE, Stewart-Savage J, Blasco A, Battaglia L, Miranda P, Kopf GS, Tezon JG (1999) Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Biol Reprod 61:76–84

    CAS  PubMed  Google Scholar 

  97. Wagner CA, Finberg KE, Stehberger PA, Lifton RP, Giebisch GH, Aronson PS, Geibel JP (2002) Regulation of the expression of the Cl/anion exchanger pendrin in mouse kidney by acid-base status. Kidney Int 62:2109–2117

    Article  CAS  PubMed  Google Scholar 

  98. Waldegger S, Moschen I, Ramirez A, Smith RJ, Ayadi H, Lang F, Kubisch C (2001) Cloning and characterization of SLC26A6, a novel member of the solute carrier 26 gene family. Genomics 72:43–50

    Article  CAS  PubMed  Google Scholar 

  99. Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL, Verlander JW (2003) Localization of pendrin in mouse kidney. Am J Physiol 284:F229–241

    CAS  Google Scholar 

  100. Wang Z, Petrovic S, Mann E, Soleimani M (2002) Identification of an apical Cl(−)/HCO exchanger in the small intestine. Am J Physiol 282:G573–579

    CAS  Google Scholar 

  101. Weber T, Zimmermann U, Winter H, Mack A, Kopschall I, Rohbock K, Zenner HP, Knipper M (2002) Thyroid hormone is a critical determinant for the regulation of the cochlear motor protein prestin. Proc Natl Acad Sci USA 99:2901–2906

    Article  CAS  Google Scholar 

  102. Xie Q, Welch R, Mercado A, Romero MF, Mount DB (2002) Molecular characterization of the murine Slc26a6 anion exchanger, functional comparison to Slc26a1. Am J Physiol 283:F826–838

    Google Scholar 

  103. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155

    CAS  PubMed  Google Scholar 

  104. Zheng J, Long KB, Shen W, Madison LD, Dallos P (2001) Prestin topology: localization of protein epitopes in relation to the plasma membrane. Neuroreport 12:1929–1935

    CAS  PubMed  Google Scholar 

  105. Zheng J, Long KB, Matsuda KB, Madison LD, Ryan AD, Dallos PD (2003) Genomic characterization and expression of mouse prestin, the motor protein of outer hair cells. Mamm Genome 14:87–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We regret the omission of many excellent references due to space limitations. We would like to thank collaborators and members of our laboratories for their work on the SLC26 exchangers, in particular Rick Welch, Nathan Angle, and Drs. Adriana Mercado, Qizhi Xie, Kambiz Zandi-Nejad, Zara Josephs, Min-Hwang Chang, and Daniel Markovich. D.B.M. was supported by NIH R01-DK57708 and an Advanced Research Career Development Award from the VA. M.F.R. was supported by a Howard Hughes Institutional grant to CWRU and the NIH (DK56218 and DK60845).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David B. Mount or Michael F. Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mount, D.B., Romero, M.F. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch - Eur J Physiol 447, 710–721 (2004). https://doi.org/10.1007/s00424-003-1090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1090-3

Keywords

Navigation