Skip to main content
Log in

Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

We have sequenced the entire mtDNA genome (mtGenome) of 241 individuals who match 1 of 18 common European Caucasian HV1/HV2 types, to identify sites that permit additional forensic discrimination. We found that over the entire mtGenome even individuals with the same HV1/HV2 type rarely match. Restricting attention to sites that are neutral with respect to phenotypic expression, we have selected eight panels of single nucleotide polymorphism (SNP) sites that are useful for additional discrimination. These panels were selected to be suitable for multiplex SNP typing assays, with 7–11 sites per panel. The panels are specific for one or more of the common HV1/HV2 types (or closely related types), permitting a directed approach that conserves limiting case specimen extracts while providing a maximal chance for additional discrimination. Discrimination provided by the panels reduces the frequency of the most common type in the European Caucasian population from ~7% to ~2%, and the 18 common types we analyzed are resolved to 105 different types, 55 of which are seen only once.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Allard MW, Miller K, Wilson M, Monson K, Budowle B (2002) Characterization of the Caucasian haplogroups present in the SWGDAM forensic mtDNA dataset for 1771 human control region sequences. Scientific Working Group on DNA Analysis Methods. J Forensic Sci 47:1215–1223

    CAS  PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  • Andreasson H, Asp A, Alderborn A, Gyllensten U, Allen M (2002) Mitochondrial sequence analysis for forensic identification using pyrosequencing technology. Biotechniques 32:124–133

    CAS  PubMed  Google Scholar 

  • Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147

    CAS  PubMed  Google Scholar 

  • Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312

    CAS  PubMed  Google Scholar 

  • Armstrong B, Stewart M, Mazumder A (2000) Suspension arrays for high throughput, multiplexed single nucleotide polymorphism genotyping. Cytometry 40:102–108

    Article  CAS  PubMed  Google Scholar 

  • Bandelt HJ, Quintana-Murci L, Salas A, Macaulay V (2002) The fingerprint of phantom mutations in mitochondrial DNA data. Am J Hum Genet 71:1150–1160

    Article  CAS  PubMed  Google Scholar 

  • Bodenteich A, Mitchell LG, Polymeropoulos MH, Merril CR (1992) Dinucleotide repeat in the human mitochondrial D-loop. Hum Mol Genet 1:140

    CAS  Google Scholar 

  • Brandstätter A, Parsons TJ, Niederstätter H, Parson W (2003) Rapid screening of mtDNA coding region SNPs for the identification of Caucasian haplogroups. Int J Legal Med 117:291–298

    Article  PubMed  Google Scholar 

  • Brown MD, Shoffner JM, Kim YL et al. (1996) Mitochondrial DNA sequence analysis of four Alzheimer’s and Parkinson’s disease patients. Am J Med Genet 61:283–289

    Article  CAS  PubMed  Google Scholar 

  • Cavelier L, Erikson I, Tammi M et al. (2002) MtDNA mutations in maternally inherited diabetes: presence of the 3397 ND1 mutation previously associated with Alzheimer’s and Parkinson’s disease. J Neuropathol Exp Neurol 61:634–639

    PubMed  Google Scholar 

  • Finnila S, Lehtonen MS, Majamaa K (2001) Phylogenetic network for European mtDNA. Am J Hum Genet 68:1475–1484

    CAS  PubMed  Google Scholar 

  • Gabriel MN, Calloway CD, Reynolds RL, Primorac D (2003) Identification of human remains by immobilized sequence-specific oligonucleotide probe analysis of mtDNA hypervariable regions I and II. Croatian Med J 44:293–298

    Google Scholar 

  • Herrnstadt C, Elson JL, Fahy E et al. (2002) Reduced-median-network analysis of complete mitochondrial DNA coding region sequences for the major African, Asian, and European haplogroups. Am J Hum Genet 70:1152–1171

    Google Scholar 

  • Herrnstadt C, Preston G, Howell N (2003) Errors, phantoms and otherwise, in human mtDNA sequences. Am J Hum Genet 72:1585–1586

    Article  CAS  PubMed  Google Scholar 

  • Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis—Validation and use for forensic casework. Forensic Sci Rev 11:21–50

    Google Scholar 

  • Horai S, Hayasaka K (1990) Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet 46:828–842

    CAS  PubMed  Google Scholar 

  • Ingman M, Gyllensten U (2003) Mitochondrial genome variation and evolutionary history of Australian and New Guinean Aborigines. Genome Res 13:1600–1606

    Article  CAS  PubMed  Google Scholar 

  • Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408:708–713

    PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

  • Lee MS, Levin BC (2002) MitoAnalyzer, a computer program and interactive web site to determine the effects of single nucleotide polymorphisms and mutations in human mitochondrial DNA. Mitochondrion 1:321–326

    Article  CAS  Google Scholar 

  • Lee SD, Lee YS, Lee JB (2002) Polymorphism in the mitochondrial cytochrome B gene in Koreans. An additional marker for individual identification. Int J Legal Med 116:74–78

    PubMed  Google Scholar 

  • Levin BC, Holland KA, Hancock DK et al. (2003) Comparison of the complete mtDNA genome sequences of human cell lines—HL-60 and GM10742A—from individuals with pro-myelocytic leukemia and leber heredity optic neuropathy, respectively, and the inclusion of HL-60 in the NIST human mitochondrial DNA standard reference material—SRM 2392-I. Mitochondrion 2:387–400

    Article  CAS  Google Scholar 

  • Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF (2002) High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum Mol Genet 11:133–145

    Article  PubMed  Google Scholar 

  • Lutz S, Wittig H, Weisser HJ et al. (2000) Is it possible to differentiate mtDNA by means of HVIII in samples that cannot be distinguished by sequencing the HVI and HVII regions? Forensic Sci Int 113:97–101

    Article  CAS  PubMed  Google Scholar 

  • Lutz-Bonengel S, Schmidt U, Schmitt T, Pollak S (2003) Sequence polymorphisms within the human mitochondrial genes MTATP6, MTATP8, and MTND4. Int J Legal Med 117:133–142

    PubMed  Google Scholar 

  • Maca-Meyer N, Gonzalez AM, Larruga JM, Flores C, Cabrera VM (2001) Major genomic mitochondrial lineages delineate early human expansions. BMC Genet 2:13

    PubMed  Google Scholar 

  • Macaulay V, Richards M, Hickey E et al. (1999) The emerging tree of west Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs. Am J Hum Genet 64:232–249

    CAS  PubMed  Google Scholar 

  • Malyarchuk BA, Rogozin IB, Berikov VB, Derenko MV (2002) Analysis of phylogenetically reconstructed mutational spectra in human mitochondrial DNA control region. Hum Genet 111:46–53

    Article  CAS  PubMed  Google Scholar 

  • Mehta AB, Vulliamy T, Gordon-Smith EC, Luzzatto L (1989) A new genetic polymorphism in the 16S ribosomal RNA gene of human mitochondrial DNA. Ann Hum Genet 53:303–310

    PubMed  Google Scholar 

  • Meyer S, Weiss G, Haeseler A von (1999) Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics 152:1103–1110

    CAS  PubMed  Google Scholar 

  • Monson KL, Miller KWP, Wilson MR, DiZinno JA, Budowle B (2002) The mtDNA population database: an integrated software and database resource for forensic comparison. Forensic Sci Comm 4:2. http://www.fbi.gov/hq/lab/fsc/backissu/april2002/miller1.htm

  • Parsons TJ, Coble MD (2001) Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome. Croatian Med J 42:304–309

    CAS  Google Scholar 

  • Saccone C, Pesole G, Sbisa E (1991) The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol 33:83–91

    CAS  PubMed  Google Scholar 

  • Stewart JE, Fisher CL, Aagaard PJ et al. (2001) Length variation in HV2 of the human mitochondrial DNA control region. J Forensic Sci 46:862–870

    CAS  PubMed  Google Scholar 

  • Torroni A, Lott MT, Cabell MF, Chen YS, Lavergne L, Wallace DC (1994) mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet 55:760–776

    CAS  PubMed  Google Scholar 

  • Torroni A, Huoponen K, Francalacci P et al. (1996) Classification of European mtDNAs from an analysis of three European populations. Genetics 144:1835–1850

    CAS  PubMed  Google Scholar 

  • Tzen CY, Wu TY, Liu HF (2001) Sequence polymorphism in the coding region of mitochondrial genome encompassing position 8389–8865. Forensic Sci Int 120:204–209

    Article  CAS  PubMed  Google Scholar 

  • Vallone PM, Just RS, Coble MD, Butler JM, Parsons TJ (2004) A multiplex allele-specific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome. Int J Legal Med 118 (in press)

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    CAS  PubMed  Google Scholar 

  • Wallace DC, Brown MD, Lott MT (1999) Mitochondrial DNA variation in human evolution and disease. Gene 238:211–230

    CAS  PubMed  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank interns Rachel Barry, Trina Bersola, Serena Filosa, Victoria Glynn, Carrie Guyan, William Ivory, Devon Pierce, and Jessica Saunier for assistance with sequence analysis and data tabulation; James Ross, Richard Coughlin, and Aaron Waldner for computer support; Jon Norris, Vinh Lam, and others from Future Technologies, Inc. for database development; Suzanne Barritt, Demris Lee, Tim McMahon, and James Thomas (AFDIL) for discussion; Walther Parson, Harrald Niederstätter, and Anita Brandstätter (ILM, Innsbruck) for discussion; John Butler and Pete Vallone (NIST) for discussion; Connie Fisher (FBI) for providing samples; Eliana Andrea and Michael Parry (American Registry of Pathology) for grant administration assistance; Mitchell Holland for early conceptual and administrative support; and Kevin (Scott) Carroll, James C. Canik, and Brion C. Smith (AFDIL) for logistical, administrative, and moral support. This work was supported by a National Institute of Justice grant 2000–1J-CX-K010 to T.J.P. The opinions and assertions contained herein are solely those of the authors and are not to be construed as official or as views of the U.S. Department of Defense, the U.S. Department of the Army, or the U.S. Department of Justice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Parsons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coble, M.D., Just, R.S., O’Callaghan, J.E. et al. Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians. Int J Legal Med 118, 137–146 (2004). https://doi.org/10.1007/s00414-004-0427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-004-0427-6

Keywords

Navigation