Skip to main content

Advertisement

Log in

Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Muscle contraction upon nerve stimulation relies on excitation–contraction coupling (ECC) to promote the rapid and generalized release of calcium within myofibers. In skeletal muscle, ECC is performed by the direct coupling of a voltage-gated L-type Ca2+ channel (dihydropyridine receptor; DHPR) located on the T-tubule with a Ca2+ release channel (ryanodine receptor; RYR1) on the sarcoplasmic reticulum (SR) component of the triad. Here, we characterize a novel class of congenital myopathy at the morphological, molecular, and functional levels. We describe a cohort of 11 patients from 7 families presenting with perinatal hypotonia, severe axial and generalized weakness. Ophthalmoplegia is present in four patients. The analysis of muscle biopsies demonstrated a characteristic intermyofibrillar network due to SR dilatation, internal nuclei, and areas of myofibrillar disorganization in some samples. Exome sequencing revealed ten recessive or dominant mutations in CACNA1S (Cav1.1), the pore-forming subunit of DHPR in skeletal muscle. Both recessive and dominant mutations correlated with a consistent phenotype, a decrease in protein level, and with a major impairment of Ca2+ release induced by depolarization in cultured myotubes. While dominant CACNA1S mutations were previously linked to malignant hyperthermia susceptibility or hypokalemic periodic paralysis, our findings strengthen the importance of DHPR for perinatal muscle function in human. These data also highlight CACNA1S and ECC as therapeutic targets for the development of treatments that may be facilitated by the previous knowledge accumulated on DHPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Qusairi L, Laporte J (2011) T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet Muscle 1:26. doi:10.1186/2044-5040-1-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amburgey K, McNamara N, Bennett LR, McCormick ME, Acsadi G, Dowling JJ (2011) Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol 70:662–665. doi:10.1002/ana.22510

    Article  PubMed  Google Scholar 

  3. Bevilacqua JA, Monnier N, Bitoun M, Eymard B, Ferreiro A, Monges S, Lubieniecki F, Taratuto AL, Laquerriere A, Claeys KG et al (2011) Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization. Neuropathol Appl Neurobiol 37:271–284. doi:10.1111/j.1365-2990.2010.01149.x

    Article  CAS  PubMed  Google Scholar 

  4. Censier K, Urwyler A, Zorzato F, Treves S (1998) Intracellular calcium homeostasis in human primary muscle cells from malignant hyperthermia-susceptible and normal individuals. Effect of overexpression of recombinant wild-type and Arg163Cys mutated ryanodine receptors. J Clin Invest 101:1233–1242. doi:10.1172/JCI993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chaudhari N (1992) A single nucleotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice. J Biol Chem 267:25636–25639

    CAS  PubMed  Google Scholar 

  6. Dowling JJ, Lawlor MW, Dirksen RT (2014) Triadopathies: an emerging class of skeletal muscle diseases. Neurotherapeutics 11:773–785. doi:10.1007/s13311-014-0300-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ducreux S, Zorzato F, Muller C, Sewry C, Muntoni F, Quinlivan R, Restagno G, Girard T, Treves S (2004) Effect of ryanodine receptor mutations on interleukin-6 release and intracellular calcium homeostasis in human myotubes from malignant hyperthermia-susceptible individuals and patients affected by central core disease. J Biol Chem 279:43838–43846. doi:10.1074/jbc.M403612200

    Article  CAS  PubMed  Google Scholar 

  8. Dulhunty AF, Karunasekara Y, Curtis SM, Harvey PJ, Board PG, Casarotto MG (2005) Role of some unconserved residues in the “C” region of the skeletal DHPR II-III loop. Front Biosci 10:1368–1381

    Article  CAS  PubMed  Google Scholar 

  9. Eberl DF, Ren D, Feng G, Lorenz LJ, Van Vactor D, Hall LM (1998) Genetic and developmental characterization of Dmca1D, a calcium channel alpha1 subunit gene in Drosophila melanogaster. Genetics 148:1159–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Engel AG, Franzini-Armstrong C (2004) Myology, basic and clinical. McGraw-Hill, New York

    Google Scholar 

  11. Fischer D, Herasse M, Bitoun M, Barragan-Campos HM, Chiras J, Laforet P, Fardeau M, Eymard B, Guicheney P, Romero NB (2006) Characterization of the muscle involvement in dynamin 2-related centronuclear myopathy. Brain 129:1463–1469. doi:10.1093/brain/awl071

    Article  PubMed  Google Scholar 

  12. Franzini-Armstrong C, Pincon-Raymond M, Rieger F (1991) Muscle fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings. Dev Biol 146:364–376

    Article  CAS  PubMed  Google Scholar 

  13. Geoffroy V, Pizot C, Redin C, Piton A, Vasli N, Stoetzel C, Blavier A, Laporte J, Muller J (2015) VaRank: a simple and powerful tool for ranking genetic variants. PeerJ 3:e796. doi:10.7717/peerj.796

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hunter JM, Ahearn ME, Balak CD, Liang WS, Kurdoglu A, Corneveaux JJ, Russell M, Huentelman MJ, Craig DW, Carpten J et al (2015) Novel pathogenic variants and genes for myopathies identified by whole exome sequencing. Mol Genet Genomic Med 3:283–301. doi:10.1002/mgg3.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jurkat-Rott K, Lehmann-Horn F (2004) The impact of splice isoforms on voltage-gated calcium channel alpha1 subunits. J Physiol 554:609–619. doi:10.1113/jphysiol.2003.052712

    Article  CAS  PubMed  Google Scholar 

  16. Jurkat-Rott K, Lehmann-Horn F, Elbaz A, Heine R, Gregg RG, Hogan K, Powers PA, Lapie P, Vale-Santos JE, Weissenbach J et al (1994) A calcium channel mutation causing hypokalemic periodic paralysis. Hum Mol Genet 3:1415–1419

    Article  CAS  PubMed  Google Scholar 

  17. Klein A, Jungbluth H, Clement E, Lillis S, Abbs S, Munot P, Pane M, Wraige E, Schara U, Straub V et al (2011) Muscle magnetic resonance imaging in congenital myopathies due to ryanodine receptor type 1 gene mutations. Arch Neurol 68:1171–1179. doi:10.1001/archneurol.2011.188

    Article  PubMed  Google Scholar 

  18. Knudson CM, Chaudhari N, Sharp AH, Powell JA, Beam KG, Campbell KP (1989) Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J Biol Chem 264:1345–1348

    CAS  PubMed  Google Scholar 

  19. Kugler G, Weiss RG, Flucher BE, Grabner M (2004) Structural requirements of the dihydropyridine receptor alpha1S II–III loop for skeletal-type excitation–contraction coupling. J Biol Chem 279:4721–4728. doi:10.1074/jbc.M307538200

    Article  CAS  PubMed  Google Scholar 

  20. Kung AW, Lau KS, Fong GC, Chan V (2004) Association of novel single nucleotide polymorphisms in the calcium channel alpha 1 subunit gene (Ca(v)1.1) and thyrotoxic periodic paralysis. J Clin Endocrinol Metab 89:1340–1345. doi:10.1210/jc.2003-030924

    Article  CAS  PubMed  Google Scholar 

  21. Lu X, Xu L, Meissner G (1994) Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor. J Biol Chem 269:6511–6516

    CAS  PubMed  Google Scholar 

  22. Malfatti E, Bohm J, Lacene E, Beuvin M, Romero NB, Laporte J (2015) A premature stop codon in MYO18B is associated with severe nemaline myopathy with cardiomyopathy. J Neuromuscul Dis 2:219–227. doi:10.3233/JND-150085

    Article  PubMed  PubMed Central  Google Scholar 

  23. Malfatti E, Romero NB (2016) Nemaline myopathies: state of the art. Rev Neurol (Paris) 172:614–619. doi:10.1016/j.neurol.2016.08.004

    Article  CAS  Google Scholar 

  24. Matthews E, Portaro S, Ke Q, Sud R, Haworth A, Davis MB, Griggs RC, Hanna MG (2011) Acetazolamide efficacy in hypokalemic periodic paralysis and the predictive role of genotype. Neurology 77:1960–1964. doi:10.1212/WNL.0b013e31823a0cb6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Monnier N, Procaccio V, Stieglitz P, Lunardi J (1997) Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet 60:1316–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nance JR, Dowling JJ, Gibbs EM, Bonnemann CG (2012) Congenital myopathies: an update. Curr Neurol Neurosci Rep 12:165–174. doi:10.1007/s11910-012-0255-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. North KN (2011) Clinical approach to the diagnosis of congenital myopathies. Semin Pediatr Neurol 18:216–220. doi:10.1016/j.spen.2011.10.002

    Article  PubMed  Google Scholar 

  28. Pai AC (1965) Developmental genetics of a lethal mutation, muscular dysgenesis (Mdg), in the mouse. Ii. Developmental analysis. Dev Biol 11:93–109

    Article  CAS  PubMed  Google Scholar 

  29. Pfeffer G, Elliott HR, Griffin H, Barresi R, Miller J, Marsh J, Evila A, Vihola A, Hackman P, Straub V et al (2012) Titin mutation segregates with hereditary myopathy with early respiratory failure. Brain 135:1695–1713. doi:10.1093/brain/aws102

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pietri-Rouxel F, Gentil C, Vassilopoulos S, Baas D, Mouisel E, Ferry A, Vignaud A, Hourde C, Marty I, Schaeffer L et al (2010) DHPR alpha1S subunit controls skeletal muscle mass and morphogenesis. EMBO J 29:643–654. doi:10.1038/emboj.2009.366

    Article  CAS  PubMed  Google Scholar 

  31. Powell JA, Petherbridge L, Flucher BE (1996) Formation of triads without the dihydropyridine receptor alpha subunits in cell lines from dysgenic skeletal muscle. J Cell Biol 134:375–387

    Article  CAS  PubMed  Google Scholar 

  32. Ptacek LJ, Tawil R, Griggs RC, Engel AG, Layzer RB, Kwiecinski H, McManis PG, Santiago L, Moore M, Fouad G et al (1994) Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 77:863–868

    Article  CAS  PubMed  Google Scholar 

  33. Rebbeck RT, Karunasekara Y, Board PG, Beard NA, Casarotto MG, Dulhunty AF (2014) Skeletal muscle excitation–contraction coupling: who are the dancing partners? Int J Biochem Cell Biol 48:28–38. doi:10.1016/j.biocel.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  34. Rezgui SS, Vassilopoulos S, Brocard J, Platel JC, Bouron A, Arnoult C, Oddoux S, Garcia L, De Waard M, Marty I (2005) Triadin (Trisk 95) overexpression blocks excitation–contraction coupling in rat skeletal myotubes. J Biol Chem 280:39302–39308. doi:10.1074/jbc.M506566200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Romero NB, Clarke NF (2013) Congenital myopathies. Handb Clin Neurol 113:1321–1336. doi:10.1016/B978-0-444-59565-2.00004-6

    Article  PubMed  Google Scholar 

  36. Sekulic-Jablanovic M, Palmowski-Wolfe A, Zorzato F, Treves S (2015) Characterization of excitation–contraction coupling components in human extraocular muscles. Biochem J 466:29–36. doi:10.1042/BJ20140970

    Article  CAS  PubMed  Google Scholar 

  37. Susman RD, Quijano-Roy S, Yang N, Webster R, Clarke NF, Dowling J, Kennerson M, Nicholson G, Biancalana V, Ilkovski B et al (2010) Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscul Disord 20:229–237. doi:10.1016/j.nmd.2010.02.016

    Article  PubMed  Google Scholar 

  38. Tang ZZ, Yarotskyy V, Wei L, Sobczak K, Nakamori M, Eichinger K, Moxley RT, Dirksen RT, Thornton CA (2012) Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel. Hum Mol Genet 21:1312–1324. doi:10.1093/hmg/ddr568

    Article  CAS  PubMed  Google Scholar 

  39. Treves S, Pouliquin R, Moccagatta L, Zorzato F (2002) Functional properties of EGFP-tagged skeletal muscle calcium-release channel (ryanodine receptor) expressed in COS-7 cells: sensitivity to caffeine and 4-chloro-m-cresol. Cell Calcium 31:1–12

    Article  CAS  PubMed  Google Scholar 

  40. Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N (2015) Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350:aad2395. doi:10.1126/science.aad2395

    Article  PubMed  Google Scholar 

  41. Zorzato F, Scutari E, Tegazzin V, Clementi E, Treves S (1993) Chlorocresol: an activator of ryanodine receptor-mediated Ca2+ release. Mol Pharmacol 44:1192–1201

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Isabelle Marty for triadin antibody, John Rendu for RYR1 molecular testing, Anne-Sophie Nicot and Clara Franzini-Armstrong for discussions, Robert Y. Carlier for analysis of MRI images, and Nicola Foulds for clinical discussions. This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, the France Génomique National infrastructure, funded as part of the Investissements d’Avenir program managed by the Agence Nationale pour la Recherche (ANR-10-INBS-09), and by Fondation Maladies Rares within the frame of the “Myocapture” sequencing project, ANR-10-LABX-0030-INRT under the frame program Investissements d’Avenir ANR-10-IDEX-0002-02, Association Française contre les Myopathies (AFM-17088), Muscular Dystrophy Association (MDA-186985), Myotubular Trust and Sparks the Children’s medical research charity grant N° 12KCL 01-MT, and the Swiss National Science Foundation grant N° 31003A-146198. T.M.P. was supported by the Diana and Steve Marienhoff Fashion Industries Guild Endowed Fellowship in Pediatric Neuromuscular Diseases. F.M. is supported by the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London. The Biobank of the MRC Neuromuscular Centre and the support of the Muscular Dystrophy UK to the Dubowitz Neuromuscular Centre are also gratefully acknowledged.

Web resources

ExAC Browser/Exome Aggregation Consortium (URL: http://exac.broadinstitute.org/). Exome Variant Server (URL: http://evs.gs.washington.edu/EVS/) [March, 2012]). 1000 genomes (URL: http://www.1000genomes.org/). Database of Single Nucleotide Polymorphisms (dbSNP Build ID: 134) (URL: http://www.ncbi.nlm.nih.gov/SNP/). Online Mendelian Inheritance in Man (OMIM) (URL: http://www.omim.org/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn Laporte.

Additional information

V. Schartner and N. B. Romero contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 114621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schartner, V., Romero, N.B., Donkervoort, S. et al. Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. Acta Neuropathol 133, 517–533 (2017). https://doi.org/10.1007/s00401-016-1656-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-016-1656-8

Keywords

Navigation