Skip to main content

Advertisement

Log in

Sequence variants in eukaryotic translation initiation factor 4-gamma (eIF4G1) are associated with Lewy body dementia

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

We recently reported a missense mutation and four variants in eukaryotic translation initiation factor 4-gamma (EIF4G1) associated with parkinsonism, dementia or both. In those with a positive family history, the mode of inheritance was autosomal dominant. Detailed neuropathologic descriptions of individuals with EIF4G1 genetic variants have not been reported. Herein, we report neuropathologic findings of three individuals from two American families with EIF4G1 variants. The patients had initial clinical presentations of dementia or parkinsonism and all had dementia at the time of autopsy. One family carried an EIF4G1 double variant, c.2056G>T (p.G686C) and c.3589C>T (p.R1197 W), and one family carried variant c.1505C>T (p.A502V). All three patients also carried at least one ε4 allele of apolipoprotein E. One individual presented with cognitive impairment without significant parkinsonism; one presented with memory problems followed by bradykinesia; and the third presented with cardinal signs of Parkinson’s disease, followed more than a year later by cognitive dysfunction. Pathological examination showed diffuse cortical Lewy bodies and Lewy neurites in all patients. A small subset of Lewy bodies and Lewy neurites were immunopositive for eIF4G1. All patients had moderate to frequent non-neuritic, cortical amyloid plaques, mostly medial temporal neurofibrillary pathology (Braak neurofibrillary tangle stages of II to IV), and minimal or no TDP-43 pathology. The results suggest that in some patients variants in EIF4G1 can be associated with pathology that has a high likelihood of association with clinical features of dementia with Lewy bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arai H, Higuchi S, Muramatsu T, Iwatsubo T, Sasaki H, Trojanowski JQ (1994) Apolipoprotein E gene in diffuse Lewy body disease with or without co-existing Alzheimer’s disease. Lancet 344:1307

    Article  PubMed  CAS  Google Scholar 

  2. Beach TG, White CL, Hamilton RL et al (2008) Evaluation of alpha-synuclein immunohistochemical methods used by invited experts. Acta Neuropathol 116:277–288

    Article  PubMed  CAS  Google Scholar 

  3. Benjamin R, Leake A, Ince PG et al (1995) Effects of apolipoprotein E genotype on cortical neuropathology in senile dementia of the Lewy body and Alzheimer’s disease. Neurodegeneration 4:443–448

    Article  PubMed  CAS  Google Scholar 

  4. Bogaerts V, Engelborghs S, Kumar-Singh S et al (2007) A novel locus for dementia with Lewy bodies: a clinically and genetically heterogeneous disorder. Brain 130:2277–2291

    Article  PubMed  Google Scholar 

  5. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  6. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  7. Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89:398–406

    Article  PubMed  CAS  Google Scholar 

  8. Crews L, Spencer B, Desplats P et al (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS ONE 5:e9313

    Article  PubMed  Google Scholar 

  9. Dickson DW, Braak H, Duda JE et al (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8:1150–1157

    Article  PubMed  CAS  Google Scholar 

  10. Dickson DW, Crystal HA, Davies P, Hardy J (1996) Cytoskeletal and Alzheimer-type pathology in Lewy body disease. In: Perry RH, McKeith IG, Perry EK (eds) Dementia with Lewy bodies: clinical, pathological and treatment issues. Cambridge University Press, Cambridge, pp 224–237

  11. Dickson DW, Ruan D, Crystal H et al (1991) Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology 41:1402–1409

    Article  PubMed  CAS  Google Scholar 

  12. Dugger BN, Dickson DW (2010) Cell type specific sequestration of choline acetyltransferase and tyrosine hydroxylase within Lewy bodies. Acta Neuropathol 120:633–639

    Article  PubMed  CAS  Google Scholar 

  13. Emre M, Aarsland D, Brown R et al (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22:1689–1707 (quiz 1837)

    Google Scholar 

  14. Fujino Y, Wang DS, Thomas N, Espinoza M, Davies P, Dickson DW (2005) Increased frequency of argyrophilic grain disease in Alzheimer disease with 4R tau-specific immunohistochemistry. J Neuropathol Exp Neurol 64:209–214

    PubMed  CAS  Google Scholar 

  15. Fujishiro H, Ferman TJ, Boeve BF et al (2008) Validation of the neuropathologic criteria of the third consortium for dementia with Lewy bodies for prospectively diagnosed cases. J Neuropathol Exp Neurol 67:649–656

    Article  PubMed  Google Scholar 

  16. Geser F, Robinson JL, Malunda JA et al (2010) Pathological 43-kDa transactivation response DNA-binding protein in older adults with and without severe mental illness. Arch Neurol 67:1238–1250

    Article  PubMed  Google Scholar 

  17. Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Article  PubMed  CAS  Google Scholar 

  18. Greenberg SM, Rebeck GW, Vonsattel JP, Gomez-Isla T, Hyman BT (1995) Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol 38:254–259

    Article  PubMed  CAS  Google Scholar 

  19. Gwinn-Hardy K, Mehta ND, Farrer M et al (2000) Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol 99:663–672

    Article  PubMed  CAS  Google Scholar 

  20. Harding AJ, Halliday GM (2001) Cortical Lewy body pathology in the diagnosis of dementia. Acta Neuropathol 102:355–363

    PubMed  CAS  Google Scholar 

  21. Jellinger KA, Attems J (2008) Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease. Acta Neuropathol 115:427–436

    Article  PubMed  Google Scholar 

  22. Josephs KA, Tsuboi Y, Cookson N, Watt H, Dickson DW (2004) Apolipoprotein E epsilon 4 is a determinant for Alzheimer-type pathologic features in tauopathies, synucleinopathies, and frontotemporal degeneration. Arch Neurol 61:1579–1584

    Article  PubMed  Google Scholar 

  23. Kawanishi C, Suzuki K, Odawara T et al (1996) Neuropathological evaluation and apolipoprotein E gene polymorphism analysis in diffuse Lewy body disease. J Neurol Sci 136:140–142

    Article  PubMed  CAS  Google Scholar 

  24. Kedersha N, Stoecklin G, Ayodele M et al (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884

    Article  PubMed  CAS  Google Scholar 

  25. Kim DH, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  PubMed  CAS  Google Scholar 

  26. Koller WC, Glatt SL, Hubble JP et al (1995) Apolipoprotein E genotypes in Parkinson’s disease with and without dementia. Ann Neurol 37:242–245

    Article  PubMed  CAS  Google Scholar 

  27. Kosaka K (1995) Diffuse Lewy body disease. Rinsho Shinkeigaku 35:1455–1456

    PubMed  CAS  Google Scholar 

  28. Kosaka K, Yoshimura M, Ikeda K, Budka H (1984) Diffuse type of Lewy body disease: progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree—a new disease? Clin Neuropathol 3:185–192

    PubMed  CAS  Google Scholar 

  29. Lesage S, Condroyer C, Klebe S et al (2012) EIF4G1 in familial Parkinson’s disease: pathogenic mutations or rare benign variants? Neurobiol Aging 33:2233:e2231–e2235

    Google Scholar 

  30. Levites Y, Das P, Price RW et al (2006) Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest 116:193–201

    Article  PubMed  CAS  Google Scholar 

  31. Li YJ, Hauser MA, Scott WK et al (2004) Apolipoprotein E controls the risk and age at onset of Parkinson disease. Neurology 62:2005–2009

    Article  PubMed  CAS  Google Scholar 

  32. Lippa CF, Duda JE, Grossman M et al (2007) DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 68:812–819

    Article  PubMed  CAS  Google Scholar 

  33. Marui W, Iseki E, Kato M, Akatsu H, Kosaka K (2004) Pathological entity of dementia with Lewy bodies and its differentiation from Alzheimer’s disease. Acta Neuropathol 108:121–128

    Article  PubMed  Google Scholar 

  34. Mattila PM, Koskela T, Roytta M et al (1998) Apolipoprotein E epsilon4 allele frequency is increased in Parkinson’s disease only with co-existing Alzheimer pathology. Acta Neuropathol 96:417–420

    Article  PubMed  CAS  Google Scholar 

  35. McKeith I, Mintzer J, Aarsland D et al (2004) Dementia with Lewy bodies. Lancet Neurol 3:19–28

    Article  PubMed  Google Scholar 

  36. McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872

    Article  PubMed  CAS  Google Scholar 

  37. Meeus B, Nuytemans K, Crosiers D et al (2010) Comprehensive genetic and mutation analysis of familial dementia with Lewy bodies linked to 2q35-q36. J Alzheimers Dis 20:197–205

    PubMed  CAS  Google Scholar 

  38. Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  PubMed  CAS  Google Scholar 

  39. Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    Article  PubMed  CAS  Google Scholar 

  40. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–796

    Article  PubMed  Google Scholar 

  41. Myers AJ, Kaleem M, Marlowe L et al (2005) The H1c haplotype at the MAPT locus is associated with Alzheimer’s disease. Hum Mol Genet 14:2399–2404

    Article  PubMed  CAS  Google Scholar 

  42. Nervi A, Reitz C, Tang MX et al (2011) Familial aggregation of dementia with Lewy bodies. Arch Neurol 68:90–93

    Article  PubMed  Google Scholar 

  43. Nishioka K, Ross OA, Vilarino-Guell C et al (2011) Glucocerebrosidase mutations in diffuse Lewy body disease. Parkinsonism Relat Disord 17:55–57

    Article  PubMed  Google Scholar 

  44. Parsian A, Racette B, Goldsmith LJ, Perlmutter JS (2002) Parkinson’s disease and apolipoprotein E: possible association with dementia but not age at onset. Genomics 79:458–461

    Article  PubMed  CAS  Google Scholar 

  45. Perry EK, Irving D, Kerwin JM et al (1993) Cholinergic transmitter and neurotrophic activities in Lewy body dementia: similarity to Parkinson’s and distinction from Alzheimer disease. Alzheimer Dis Assoc Disord 7:69–79

    Article  PubMed  CAS  Google Scholar 

  46. Ramirez-Valle F, Braunstein S, Zavadil J, Formenti SC, Schneider RJ (2008) eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. J Cell Biol 181:293–307

    Article  PubMed  CAS  Google Scholar 

  47. Ross OA, Gosal D, Stone JT et al (2007) Familial genes in sporadic disease: common variants of alpha-synuclein gene associate with Parkinson’s disease. Mech Ageing Dev 128:378–382

    Article  PubMed  CAS  Google Scholar 

  48. Ross OA, Toft M, Whittle AJ et al (2006) Lrrk2 and Lewy body disease. Ann Neurol 59:388–393

    Article  PubMed  CAS  Google Scholar 

  49. Saito Y, Kawashima A, Ruberu NN et al (2003) Accumulation of phosphorylated alpha-synuclein in aging human brain. J Neuropathol Exp Neurol 62:644–654

    PubMed  CAS  Google Scholar 

  50. Silvera D, Arju R, Darvishian F et al (2009) Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol 11:903–908

    Article  PubMed  CAS  Google Scholar 

  51. St Clair D, Norrman J, Perry R, Yates C, Wilcock G, Brookes A (1994) Apolipoprotein E epsilon 4 allele frequency in patients with Lewy body dementia, Alzheimer’s disease and age-matched controls. Neurosci Lett 176:45–46

    Article  PubMed  CAS  Google Scholar 

  52. Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  53. Tsuang DW, Dalan AM, Eugenio CJ et al (2002) Familial dementia with lewy bodies: a clinical and neuropathological study of 2 families. Arch Neurol 59:1622–1630

    Article  PubMed  Google Scholar 

  54. Tsuboi Y, Dickson DW (2005) Dementia with Lewy bodies and Parkinson’s disease with dementia: are they different? Parkinsonism Relat Disord 11(Suppl 1):S47–S51

    Article  PubMed  Google Scholar 

  55. Tsuboi Y, Uchikado H, Dickson DW (2007) Neuropathology of Parkinson’s disease dementia and dementia with Lewy bodies with reference to striatal pathology. Parkinsonism Relat Disord 13(Suppl 3):S221–S224

    Article  PubMed  Google Scholar 

  56. Tucci A, Charlesworth G, Sheerin UM, Plagnol V, Wood NW, Hardy J (2012) Study of the genetic variability in a Parkinson’s Disease gene: EIF4G1. Neurosci Lett 518:19–22

    Article  PubMed  CAS  Google Scholar 

  57. Vefring H, Haugarvoll K, Tysnes OB, Larsen JP, Kurz MW (2010) The role of APOE alleles in incident Parkinson’s disease. The Norwegian ParkWest Study. Acta Neurol Scand 122:438–441

    Article  PubMed  CAS  Google Scholar 

  58. Wakabayashi K, Hayashi S, Ishikawa A et al (1998) Autosomal dominant diffuse Lewy body disease. Acta Neuropathol 96:207–210

    Article  PubMed  CAS  Google Scholar 

  59. Weaver CL, Espinoza M, Kress Y, Davies P (2000) Conformational change as one of the earliest alterations of tau in Alzheimer’s disease. Neurobiol Aging 21:719–727

    Article  PubMed  CAS  Google Scholar 

  60. Whitehead AS, Bertrandy S, Finnan F, Butler A, Smith GD, Ben-Shlomo Y (1996) Frequency of the apolipoprotein E epsilon 4 allele in a case-control study of early onset Parkinson’s disease. J Neurol Neurosurg Psychiatry 61:347–351

    Article  PubMed  CAS  Google Scholar 

  61. Wider C, Ross OA, Nishioka K et al (2012) An evaluation of the impact of MAPT, SNCA and APOE on the burden of Alzheimer and Lewy body pathology. J Neurol Neurosurg Psychiatry 83:424–429

    Google Scholar 

  62. Wider C, Vilarino-Guell C, Jasinska-Myga B et al (2010) Association of the MAPT locus with Parkinson’s disease. Eur J Neurol 17:483–486

    Article  PubMed  CAS  Google Scholar 

  63. Wilson AC, Dugger BN, Dickson DW, Wang DS (2011) TDP-43 in aging and Alzheimer’s disease—a review. Int J Clin Exp Pathol 4:147–155

    PubMed  CAS  Google Scholar 

  64. Wu E, Lipton RB, Dickson DW (1992) Amyloid angiopathy in diffuse Lewy body disease. Neurology 42:2131–2135

    Article  PubMed  CAS  Google Scholar 

  65. Zarranz JJ, Alegre J, Gomez-Esteban JC et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

  66. Zhang YJ, Xu YF, Cook C et al (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci USA 106:7607–7612

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MJF and CVG are grateful to support from the Canada Excellence Research Chairs program. In addition, Leading Edge Endowment Funds provided by the Province of British Columbia, LifeLabs, and Genome BC support the Dr. Donald Rix BC Leadership Chair (MJF). RR was supported by the National Institute of Health (R01 NS065782, R01 AG26251, and P50 AG16574). ZKW was partially supported by the National Institute of Health (RC2 NS070276, R01 NS057567) and Dystonia Medical Research Foundation. ZKW and DWD were supported by National Institute of Health (P50 NS072187.). DWD is supported by the Robert E. Jacoby Professorship. The authors would like to thank Dr. Peter Davies, Albert Einstein College of Medicine for sharing his antibodies for tau, Dr. Leonard Petrucelli, Mayo Clinic Jacksonville for sharing the antibody for TDP-43, and Dr. Pritam Das, Mayo Clinic Jacksonville for sharing antibodies to Aβ.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis W. Dickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujioka, S., Sundal, C., Strongosky, A.J. et al. Sequence variants in eukaryotic translation initiation factor 4-gamma (eIF4G1) are associated with Lewy body dementia. Acta Neuropathol 125, 425–438 (2013). https://doi.org/10.1007/s00401-012-1059-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-1059-4

Keywords

Navigation