Skip to main content
Log in

Sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Abnormalities in intracellular Ca2+ handling play a crucial role in the pathogenesis of heart failure. The reduced capacity of failing human myocardium to restore low resting Ca2+ levels during diastole has been explained by the impairment of Ca2+ uptake into the sarcoplasmic reticulum (SR) via the SR Ca2+ATPase. It is unclear whether Ca2+ATPase function, protein levels, and mRNA steady-state levels correspond to one other, and whether the cause of heart failure, namely idiopathic dilated or ischemic cardiomyopathy, produces different changes. The present study examined SR Ca2+ATPase activity and both mRNA and protein levels of SR Ca2+ATPase, phospholamban, and Giα2 in left ventricular myocardium from eight nonfailing hearts, from eight hearts of patients with idiopathic dilated cardiomyopathy (DCM), and from six hearts from patients with ischemic cardiomyopathy (ICM). Compared to nonfailing myocardium, the activity of the SR Ca2+ATPase was significantly reduced in failing myocardium from patients with DCM (36%, P<0.01) and from patients with ICM (37%, P<0.001). Significantly lower levels of SR Ca2+ATPase mRNA levels (55% and -56%, P<0.001 for DCM and ICM, respectively) and phospholamban mRNA (45%, P<0.001 for DCM; 31%, P<0.05 for ICM) were observed in failing than in nonfailing myocardium. In contrast, no significant changes were observed at the level of proteins. Giα2 mRNA and protein levels were both significantly increased in failing mycocardium. There were no differences between idiopathic dilated and ischemic cardiomyopathy concerning the examined parameter. It is concluded that reduced SR Ca2+ATPase activity contributes to an altered intracellular Ca2+ handling by the SR in both dilated and ischemic cardiomyopathic hearts. However, changes in SR Ca2+ATPase and phospholamban steady-state protein levels do not contribute to these alterations. The dissociation between protein and mRNA levels provides evidence for a posttranscriptional or posttranslational regulation of these proteins. The observed alterations are not dependent on the underlying cause of end-stage heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GAPDH :

Glyceraldehyde-3-phosphate dehydrogenase

Giα 2 :

Inhibitory G-protein α-subunit

β-MHC :

β-Myosin heavy chain

PAGE :

Polyacrylamide gel electrophoresis

SDS :

Sodium dodecylsulphate

SR :

Sarcoplasmic reticulum

References

  1. Katz AM (1990) Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med 322:100–110

    CAS  PubMed  Google Scholar 

  2. Gwathmey JK, Copelas L, Mackkinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with endstage heart failure. Circ Res 61:70–76

    CAS  PubMed  Google Scholar 

  3. Schwinger RHG, Böhm M, Erdmann E (1992) Inotropic and lusitropic dysfunction in myocardium from patients with dilated cardiomyopathy. Am Heart J 123:116–128

    Google Scholar 

  4. Morgan JP, Raymond EE, Paul A, Grossman W, Gwathmey JK (1990) Abnormal intracellular calcium handling as a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation 81 [Suppl III]:21–32

    Google Scholar 

  5. Gwathmey JK, Sanford EW, Briggs GM, Copelas L, Feldman MD, Preston JP, Callahan M, Schoen FJ, Grossman W, Morgan JP (1991) Diastolic dysfunction in hypertrophie cardiomyopathy. J Clin Invest 87:1023–1031

    Google Scholar 

  6. Morgan JP (1991) Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med 325:625–632

    Google Scholar 

  7. Beuckelmann DJ, Näuer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055

    CAS  PubMed  Google Scholar 

  8. Lamers JHJ, Satinis JT (1979) Defective calcium pump in the sarcoplasmic reticulum of the hypertrophied rabbit heart. Life Sci 24:2313–2320

    Google Scholar 

  9. de la Bastie D, Levitsky D, Rappaport L, Mercadier J-J, Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, Lompré A-M (1990) Function of the sarcoplasmic reticulum and expression of its Ca2+ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 66:554–564

    PubMed  Google Scholar 

  10. Levitsky D, de la Bastie D, Schwartz K, Lompré A-M (1991) Ca2+ATPase and function of sarcoplasmic reticulum during cardiac hypertrophy. Am J Physiol 256:H1006-H1011

    Google Scholar 

  11. Kuo TH, Tsaang W, Wang KK, Carlock L (1992) Simultaneous reduction of the sarcolemmal and SR calcium ATPase activities and gene expression in cardiomyopathic hamster. Biochim Biophys Acta 1138:343–349

    Google Scholar 

  12. Limas CL, Olivari M-T, Goldenberg IF, Levine TB, Benditt DG, Simon A (1987) Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc Res 21:601–605

    Google Scholar 

  13. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75:434–442

    Google Scholar 

  14. Arai M, Matsui H, Periasamy M (1994) Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circulation 74:555–564

    Google Scholar 

  15. Movsesian MA, Bristow MR, Krall J (1989) Ca2+ uptake by cardiac sarcoplasmic reticulum from patients with idiopathic dilated cardiomyopathy. Circ Res 65:1141–1144

    Google Scholar 

  16. Bristow MR, Ginsburg R, Minobe W, Cubiciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211

    CAS  PubMed  Google Scholar 

  17. Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase in the 40,000-mol wt pertussis toxin substrate (G-protein) in the failing human heart. J Clin Invest 82:189–197

    Google Scholar 

  18. Böhm M, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E (1990) Increase of Giα in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249–1265

    Google Scholar 

  19. Böhm M, Eschenhagen T, Gierschik P, Larisch K, Lensche H, Mende U, Schmitz W, Schnabel P, Scholz H, Steinfath M, Erdmann Ei (1994) Radioimmunochemical quantfication of Giα in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol 26:113–149

    Google Scholar 

  20. Danielsen W, von der Leyen H, Meyer W, Neumann J, Schmitz W, Scholz H, Starbally J, Siein B, Doring V, Kalmar P (1989) Basal and isoprenaline-stimulated cAMP content in failing versus nonfailing human cardiac preparations. J Cardiovasc Pharmacol 14:171–173

    Google Scholar 

  21. Jones LR (1985) Sarcolemmal enzymes mediating β-adrenergic effects on the heart. In Bronner FA, Shamoo AE (eds) Current topics in membranes and transport; regulation of caclium transport across muscle membranes. Academic, New York, pp 11–41

    Google Scholar 

  22. Lindemann JP, Jones LR, Hathaway DR, Henry BG, Watanabe AM (1983) β-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem 258:46471

    Google Scholar 

  23. Karczewski P, Bartel S, Krause EG (1990) Differential sensitivity to isoproterenol of phospholamban and troponin I phosphorylation in isolated rat hearts. Biochem J 266:115–122

    Google Scholar 

  24. Colyer J, Wang JH (1991) Dependence of cardiac sarcoplasmic reticulum calcium pump activity on the phosphorylation status of phospholamban. J Biol Chem 266:17486–17493

    Google Scholar 

  25. Mattiazzi A, Hove-Madsen L, Bers DM (1994) Protein kinase inhibitors reduce SR Ca transport in permeabilized cardiac myocytes. Am J Phys 267:H812-H820

    Google Scholar 

  26. Nagai R, Zarain-Herzberg A, Brandl CJ, Fujii J, Tada M, MacLennan DH, Alpert N, Periasamy M (1989) Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86:2966–2970

    Google Scholar 

  27. Mercadier J-J, Lompré A-M, Due P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komjada M, Schwartz K (1990) Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305–309

    Google Scholar 

  28. Feldman AM, Ray PE, Silan CM, Mercer JA, Minobe W, Bristow MR (1991) Selective gene expression in failing human heart: quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation 83:1866–1872

    Google Scholar 

  29. Linck B, Boknik P, Eschenhagen T, Müller FU, Neumann J, Nose M, Jones LR, Schmitz W, Scholz H. Messenger RNA expression and immunological quantification of phospholamban and SR Ca2+ ATPase in failing and nonfailing human hearts. Cardiovasc Res (1996); in press

  30. Takahashi T, Alien PD, Izumo S (1992) Expression of A-, B-, and C-type natriuretic peplide genes in failing and developing human ventricles: correlalion wilh expression of ihe Ca2+- ATPase gene. Circ Res 71:9–17

    Google Scholar 

  31. Arai M, Alpert NR, Mac Lennan DH, Barton P, Periasamy M (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. Circ Res 72:463–469

    Google Scholar 

  32. Komuro I, Kurayabashi M, Shibazaki Y, Takaku F, Yazaki Y (1989) Molecular cloning and characterization of a Ca2+- Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. J Clin Invest 83:1102–1108

    Google Scholar 

  33. Movsesian MA, Karimi M, Green K, Jones LR (1994) Ca2+- transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 90:653–657

    Google Scholar 

  34. Eschenhagen T, Mende U, Nose M, Schmitz W, Scholz H, Haverich A, Hirt S, Döring V, Kalmar P, Höppner W, Seitz HJ (1992) Increased messenger RNA level of the inhibitory G- protein α-subunit Giα2 in human end-stage heart failure. Circ Res 70:688–696

    Google Scholar 

  35. Bristow MR, Anderson FL, Port D, Skerls L, Hershberger RE, Larrabee P, O'Connell JB, Renlund DG, Volkman K, Murray J, Feldman AM (1991) Differences in β-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 84:1024–1039

    Google Scholar 

  36. Brilliantes AM, Allen P, Takahashi T, Izumo S, Marks AR (1992) Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circ Res 71:18–26

    Google Scholar 

  37. Chu A, Dixon MC, Saito A, Seiler S, Fleischer S (1988) Isolation of sarcoplasmic reticulum fractions referable to longitudinal tubules and junctional terminal cisternae from rabbit skeletal muscle. Meth Enzym 157:366

    Google Scholar 

  38. Fabiato A (1988) Computer programs for calculating total from specified free or free from specified total ionic concentrations in aequeous solutions containing multiple metals and ligands. Meth Enzym 157:37817

    Google Scholar 

  39. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidmiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  40. Lytton J, Mac Lennan DH (1988) Molecular cloning of cDNAs from human kidney coding for two alternative spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem 263:15024–15031

    Google Scholar 

  41. Fujii J, Zarain-Herzberg A, Willard HF, Tada M, MacLennan DH (1991) Structure of the rabbit phospholamban gene, cloning of the human cDNA, and assignment of the gene to human chromosome 6. J Biol Chem 266:11669–11675

    Google Scholar 

  42. Didsbury JR, Ho YS, Snyderman R (1987) Human G1 protein α-subunit: deduction of amino acid structure from a cloned cDNA. FEBS Lett 211:160–164

    Google Scholar 

  43. Böhm M, Reiger B, Schwinger RHG, Erdmann E (1994) cAMP concentrations, cAMP dependent protein kinase activity, and phospholamban in non-failing and failing myocardium. Cardiovasc Res 28:1713–1719

    Google Scholar 

  44. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  45. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  46. Dixon TF, Purdom M (1954) Serum 5′ nucleotidase. J Clin Pathol 7:341–351

    Google Scholar 

  47. Wallenstein S, Zucker CL, Fleiss JL (1980) Some statistical methods useful in circulation research. Circ Res 47:1–9

    Google Scholar 

  48. Tomplison CW, Godin DV, Rabkin SW (1985) Adriamycin cardiomyopathy: implications of cellular changes in a canine model with mild impairment of left ventricular function. Biochem Pharmacol 34:4033–4041

    Google Scholar 

  49. Burnett JC Jr, Keo PC, Hu DC, Heser DW, Heublein D, Granger JP, Opgenorth TJ, Reeder GS (1986) Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231:12145–1147

    Google Scholar 

  50. Studer R Reinicke H, Bilger J, Eschenhagen T, Böhm M, Hasenfuß G, Just H, Holtz J, Drexler H. Gene expression of the cardiac Na+-Ca2+ exchanger in end-stage human heart failure. Circ Res (1994); 75:443–453

    Google Scholar 

  51. Suzuki T, Wang JH. Stimulation of bovine cardiac sarcoplasmic reticulum Ca2+ pump blocking of phospholamban phosphorylation and dephosphorylation by a phospholamban monoclonal antibody. J Biol Chem (1986); 261:7918–7023

    Google Scholar 

  52. Li C, Wang JH, Colyer. Immunological detection of phospholamban phosphorylation states facilitates the description of the mechanism of phosphorylation and dephosphorylation. Biochemistry (1990); 29:4535540

    Google Scholar 

  53. Flesch M, Pütz F, Schwinger RHG, Paul M, Böhm M (1995) Altered sarcoplasmic reticulum gene expression in cardiac hypertrophy of renin transgenic rats corresponds to diastolic contractile dysfunction (abstract). Circulation [Suppl]:92:1–348

    Google Scholar 

  54. Linzbach AJ (1960) Heart failure from the viewpoint of quantitative anatomy. Am J Cardiol 5:370–382

    Google Scholar 

  55. Magid NM, Borer JS, Young MS, Wallerson DC, DeMonteiro C (1993) Suppression of protein degradation in progressive cardiac hypertrophy of chronic aortic regurgtation. Circulation 87:1249–1257

    Google Scholar 

  56. Marayanan N, Newland M, Neudorf DC (1983) Inhibition of sarcoplasmic reticulum Ca2+ pump by cytosolic proteins endogenous to heart and slow skeletal muscle but not fast skeletal muscle. Biochim Biophys Acta 735:53–66

    Google Scholar 

  57. Chiesi M, Schwaller R (1987) Characterization of heart cytosolic proteins capable of modulating calcium uptake by the sarcoplasmic reticulum. II. Identification of actin isoforms with inhibitory activity. Eur J Biochem 162:371–377

    Google Scholar 

  58. Chiesi M, Guerini D (1987) Characterization of heart cytosolic proteins capable of modulating calcium uptake by the sarcoplasmic reticulum. 1. Isolation of a protein with protective activity and ist identification as muscle albumin. Eur J Biochem 162:365–370

    Google Scholar 

  59. Böhm M, Beuckelmann DJ, Brown L, Feiler G, Lorenz B, Näbauer M, Kemkes B, Erdmann E (1988) Reduction of betaadrenoceptor density and evaluation of positive inotropic responses in isolated, diseased human myocardium. Eur Heart J 9:844–852

    Google Scholar 

  60. Bristow MR, Ginsburg R, Strosberg A, Montgomery W, Minobe W (1984) Pharmacology and inotropic potential of forskolin in the human heart. J Clin Invest 74:212–223

    Google Scholar 

  61. Mulieri LA, Bruce JL, Martin BJ, Haeberle JR, Alpert NR (1993) Myocardial force-frequency defect in mitral regurgitation heart failure is reversed by forskolin. Circulation 88:2700–2704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flesch, M., Schwinger, R.H.G., Schnabel, P. et al. Sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Mol Med 74, 321–332 (1996). https://doi.org/10.1007/BF00207509

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207509

Key words

Navigation