Skip to main content
Log in

A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1–25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at θ=0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the −3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mehl AL, Thomson V (1998) Newborn hearing screening: the great omission. Pediatrics 101:E4

    Article  Google Scholar 

  2. Mehl AL, Thomson V (2002) The Colorado newborn hearing screening project, 1992–1999: on the threshold of effective population-based universal newborn hearing screening. Pediatrics 109:E7

    Article  PubMed  Google Scholar 

  3. Roizen NJ (2003) Nongenetic causes of hearing loss. Ment Retard Dev Disabil Res Rev 9:120–127

    Article  PubMed  Google Scholar 

  4. Morton NE (1991) Genetic epidemiology of hearing impairment. Ann NY Acad Sci 630:16–31

    PubMed  Google Scholar 

  5. Ahmed ZM, Riazuddin S, Riazuddin S, Wilcox ER (2003) The molecular genetics of Usher syndrome. Clin Genet 63:431–444

    Article  PubMed  Google Scholar 

  6. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422

    Article  PubMed  Google Scholar 

  7. Li XC, Everett LA, Lalwani AK, Desmukh D, Friedman TB, Green ED, Wilcox ER (1998) A mutation in PDS causes non-syndromic recessive deafness. Nat Genet 18:215–217

    Article  PubMed  Google Scholar 

  8. Kimberling WJ, Moller C (1995) Clinical and molecular genetics of Usher syndrome. J Am Acad Audiol 6:63–72

    PubMed  Google Scholar 

  9. Davenport SLH, Omenn GS (1997) The heterogeneity of Usher Syndrome, abstract. In: Littlefield JW, Ebbing FJG, Henderson JW (eds) Fifth International Conference on Birth Defects. Excerpta Medica, Amsterdam, pp 87–88

    Google Scholar 

  10. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD (1995) Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374:60–61

    Article  PubMed  Google Scholar 

  11. Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith VV, Milla PJ, Hussain K, Furth-Lavi J, Cosgrove KE, Shepherd RM, Barnes PD, O’Brien RE, Farndon PA, Sowden J, Liu XZ, Scanlan MJ, Malcolm S, Dunne MJ, Aynsley-Green A, Glaser B (2000) A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat Genet 26:56–60

    Article  PubMed  Google Scholar 

  12. Verpy E, Leibovici M, Zwaenepoel I, Liu XZ, Gal A, Salem N, Mansour A, Blanchard S, Kobayashi I, Keats BJ, Slim R, Petit C (2000) A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 26:51–55

    Article  PubMed  Google Scholar 

  13. Bolz H, von Brederlow B, Ramirez A, Bryda EC, Kutsche K, Nothwang HG, Seeliger M, Cabrera MC-S, Vila MC, Molina OP, Gal A, Kubisch C (2001) Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet 27:108–112

    Article  PubMed  Google Scholar 

  14. Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, Polomeno R, Ramesh A, Schloss M, Srisailpathy CR, Wayne S, Bellman S, Desmukh D, Ahmed Z, Khan SN, Kaloustian VM, Li XC, Lalwani A, Riazuddin S, Bitner-Glindzicz M, Nance WE, Liu XZ, Wistow G, Smith RJ, Griffith AJ, Wilcox ER, Friedman TB, Morell RJ (2001) Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 68:26–37

    Article  PubMed  Google Scholar 

  15. Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Riazuddin S, Wilcox ER (2001) Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am J Hum Genet 69:25–34

    Article  PubMed  Google Scholar 

  16. Weil D, El Amraoui A, Masmoudi S, Mustapha M, Kikkawa Y, Laine S, Delmaghani S, Adato A, Nadifi S, Zina ZB, Hamel C, Gal A, Ayadi H, Yonekawa H, Petit C (2003) Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum Mol Genet 12:463–471

    Article  PubMed  Google Scholar 

  17. Adato A, Michel V, Kikkawa Y, Reiners J, Alagramam KN, Weil D, Yonekawa H, Wolfrum U, El Amraoui A, Petit C (2005) Interactions in the network of Usher syndrome type 1 proteins. Hum Mol Genet 14:347–356

    Article  PubMed  Google Scholar 

  18. Boeda B, El Amraoui A, Bahloul A, Goodyear R, Daviet L, Blanchard S, Perfettini I, Fath KR, Shorte S, Reiners J, Houdusse A, Legrain P, Wolfrum U, Richardson G, Petit C (2002) Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J 21:6689–6699

    Article  PubMed  Google Scholar 

  19. Jelen F, Oleksy A, Smietana K, Otlewski J (2003) PDZ domains—common players in the cell signaling. Acta Biochim Pol 50:985–1017

    PubMed  Google Scholar 

  20. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Article  PubMed  Google Scholar 

  21. Im YJ, Lee JH, Park SH, Park SJ, Rho SH, Kang GB, Kim E, Eom SH (2003) Crystal structure of the Shank PDZ–ligand complex reveals a class I PDZ interaction and a novel PDZ–PDZ dimerization. J Biol Chem 278:48099–48104

    Article  PubMed  Google Scholar 

  22. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    PubMed  Google Scholar 

  23. Lathrop GM, Lalouel JM (1984) Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet 36:460–465

    PubMed  Google Scholar 

  24. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85:1067–1076

    Article  PubMed  Google Scholar 

  25. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  PubMed  Google Scholar 

  26. Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520

    Article  PubMed  Google Scholar 

  27. Chinea G, Padron G, Hooft RW, Sander C, Vriend G (1995) The use of position-specific rotamers in model building by homology. Proteins 23:415–421

    Article  PubMed  Google Scholar 

  28. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins 47:393–402

    Article  PubMed  Google Scholar 

  29. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Article  PubMed  Google Scholar 

  30. Gyapay G, Morissette J, Vignal A, Dib C, Fizames C, Millasseau P, Marc S, Bernardi G, Lathrop M, Weissenbach J (1994) The 1993–94 Genethon human genetic linkage map. Nat Genet 7:246–339

    Article  PubMed  Google Scholar 

  31. Reczek D, Berryman M, Bretscher A (1997) Identification of EBP50. A PDZ-containing phosphoprotein that associates with members of the ezrin–radixin–moesin family. J Cell Biol 139:169–179

    Article  PubMed  Google Scholar 

  32. Kurashima K, D’Souza S, Szaszi K, Ramjeesingh R, Orlowski J, Grinstein S (1999) The apical Na(+)/H(+) exchanger isoform NHE3 is regulated by the actin cytoskeleton. J Biol Chem 274:29843–29849

    Article  PubMed  Google Scholar 

  33. Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N, Welsh MJ, Lefkowitz RJ (1998) A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci U S A 95:8496–8501

    Article  PubMed  Google Scholar 

  34. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275:73–77

    Article  PubMed  Google Scholar 

  35. Birrane G, Chung J, Ladias JA (2003) Novel mode of ligand recognition by the Erbin PDZ domain. J Biol Chem 278:1399–1402

    Article  PubMed  Google Scholar 

  36. Muller D, Kausalya PJ, Claverie-Martin F, Meij IC, Eggert P, Garcia-Nieto V, Hunziker W (2003) A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet 73:1293–1301

    Article  PubMed  Google Scholar 

  37. Moller CG, Kimberling WJ, Davenport SL, Priluck I, White V, Biscone-Halterman K, Odkvist LM, Brookhouser PE, Lund G, Grissom TJ (1989) Usher syndrome: an otoneurologic study. Laryngoscope 99:73–79

    PubMed  Google Scholar 

  38. Tsilou ET, Rubin BI, Caruso RC, Reed GF, Pikus A, Hejtmancik JF, Iwata F, Redman JB, Kaiser-Kupfer MI (2002) Usher syndrome clinical types I and II: could ocular symptoms and signs differentiate between the two types? Acta Ophthalmol Scand 80:196–201

    Article  PubMed  Google Scholar 

  39. Wagenaar M (2000) The Usher Syndrome. A clinical and genetic correlation. Thesis, Katholieke Universiteit Nijmegen

  40. Young NM, Mets MB, Hain TC (1996) Early diagnosis of Usher syndrome in infants and children. Am J Otol 17:30–34

    PubMed  Google Scholar 

  41. Astuto LM, Bork JM, Weston MD, Askew JW, Fields RR, Orten DJ, Ohliger SJ, Riazuddin S, Morell RJ, Khan S, Riazuddin S, Kremer H, van Hauwe P, Moller CG, Cremers CW, Ayuso C, Heckenlively JR, Rohrschneider K, Spandau U, Greenberg J, Ramesar R, Reardon W, Bitoun P, Millan J, Legge R, Friedman TB, Kimberling WJ (2002) CDH23 mutation and phenotype heterogeneity: a profile of 107 diverse families with Usher syndrome and nonsyndromic deafness. Am J Hum Genet 71:262–275

    Article  PubMed  Google Scholar 

  42. Pennings RJ, Topsakal V, Astuto L, de Brouwer AP, Wagenaar M, Huygen PL, Kimberling WJ, Deutman AF, Kremer H, Cremers CW (2004) Variable clinical features in patients with CDH23 mutations (USH1D-DFNB12). Otol Neurotol 25:699–706

    Article  PubMed  Google Scholar 

  43. Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the families for participating in this study. The authors thank E. Kandemir, E. Sözen for technical assistance, and C. Hoyng for valuable discussion. This study was supported by the Karadeniz Technical University Research Fund (project no. 2002.114.001.3), the Heinsius Houbolt Foundation, Stichting Irene Kinderziekenhuis, and Stichting Vrienden van Effatha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kalay.

Additional information

E. Kalay and A.P.M. de Brouwer contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalay, E., de Brouwer, A.P.M., Caylan, R. et al. A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome. J Mol Med 83, 1025–1032 (2005). https://doi.org/10.1007/s00109-005-0719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0719-4

Keywords

Navigation