Skip to main content

Advertisement

Log in

Emerging roles for WNK kinases in cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The subfamily of WNK protein kinases is composed of four human genes and is characterised by a typical sequence variation within the conserved catalytic domain. Although most research has focussed on the role of WNK1, WNK3 and WNK4 in regulating different ion transporters in both the kidney and extrarenal tissues, there is growing evidence for additional roles of WNK kinases in various signalling cascades related to cancer. Here, we review the connection between WNK kinases and tumorigenesis and describe existing experimental evidence as well as potential new links to major aspects of tumour biology. In particular, we discuss their role in G1/S cell cycle progression, metabolic tumour cell adaptation, evasion of apoptosis and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    CAS  PubMed  Google Scholar 

  2. Kostich M, English J, Madison V, Gheyas F, Wang L, Qiu P, Greene J, Laz TM (2002) Human members of the eukaryotic protein kinase family. Genome Biol 3, RESEARCH0043

  3. Hanks SK (2003) Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol 4:111.1–111.7

    Google Scholar 

  4. Hanks SK, Hunter T (1995) The eucaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    CAS  PubMed  Google Scholar 

  5. Xu BE, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH (2000) WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 275:16795–16801

    CAS  PubMed  Google Scholar 

  6. Veríssimo F, Jordan P (2001) WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 20:5562–5569

    PubMed  Google Scholar 

  7. Min X, Lee BH, Cobb MH, Goldsmith EJ (2004) Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure 12:1303–1311

    CAS  PubMed  Google Scholar 

  8. Nakamichi N, Murakami-Kojima M, Sato E, Kishi Y, Yamashino T, Mizuno T (2002) Compilation and characterization of a novel WNK family of protein kinases in Arabiodpsis thaliana with reference to circadian rhythms. Biosci Biotechnol Biochem 66:2429–2436

    CAS  PubMed  Google Scholar 

  9. Xu BE, Min X, Stippec S, Lee BH, Goldsmith EJ, Cobb MH (2002) Regulation of WNK1 by an autoinhibitory domain and autophosphorylation. J Biol Chem 277:48456–48462

    CAS  PubMed  Google Scholar 

  10. Zagórska A, Pozo-Guisado E, Boudeau J, Vitari AC, Rafiqi FH, Thastrup J, Deak M, Campbell DG, Morrice NA, Prescott AR, Alessi DR (2007) Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress. J Cell Biol 176:89–100

    PubMed  Google Scholar 

  11. Wang Z, Yang CL, Ellison DH (2004) Comparison of WNK4 and WNK1 kinase and inhibiting activities. Biochem Biophys Res Commun 317:939–944

    CAS  PubMed  Google Scholar 

  12. Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241

    CAS  PubMed  Google Scholar 

  13. Xu BE, Lee BH, Min X, Lenertz L, Heise CJ, Stippec S, Goldsmith EJ, Cobb MH (2005) WNK1: analysis of protein kinase structure, downstream targets, and potential roles in hypertension. Cell Res 15:6–10

    PubMed  Google Scholar 

  14. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    CAS  PubMed  Google Scholar 

  15. Xu BE, Stippec S, Lenertz L, Lee B-H, Zhang W, Lee YK, Cobb MH (2004) WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. J Biol Chem 279:7826–7831

    CAS  PubMed  Google Scholar 

  16. Sun X, Gao L, Yu RK, Zeng G (2006) Down-regulation of WNK1 protein kinase in neural progenitor cells suppresses cell proliferation and migration. J Neurochem 99:1114–1121

    CAS  PubMed  Google Scholar 

  17. Moniz S, Veríssimo F, Matos P, Brazão R, Silva E, Kotelevets L, Chastre E, Gespach C, Jordan P (2007) Protein kinase WNK2 inhibits cell proliferation by negatively modulating the activation of MEK1/ERK1/2. Oncogene 26:6071–6081

    CAS  PubMed  Google Scholar 

  18. Hong C, Moorefield KS, Jun P, Aldape KD, Kharbanda S, Phillips HS, Costello JF (2007) Epigenome scans and cancer genome sequencing converge on WNK2, a kinase-independent suppressor of cell growth. Proc Natl Acad Sci USA 104:10974–10979

    CAS  PubMed  Google Scholar 

  19. Jun P, Hong C, Lal A, Wong JM, McDermott MW, Bollen AW, Plass C, Held WA, Smiraglia DJ, Costello JF (2009) Epigenetic silencing of the kinase tumor suppressor WNK2 is tumor-type and tumor-grade specific. Neuro Oncol 11:414–422

    CAS  PubMed  Google Scholar 

  20. Moniz S, Matos P, Jordan P (2008) WNK2 modulates MEK1 activity through the Rho GTPase pathway. Cell Signal 20:1762–1768

    CAS  PubMed  Google Scholar 

  21. Shaharabany M, Holtzman EJ, Mayan H, Hirschberg K, Seger R, Farfel Z (2008) Distinct pathways for the involvement of WNK4 in the signaling of hypertonicity and EGF. FEBS J 275:1631–1642

    CAS  PubMed  Google Scholar 

  22. Lenertz LY, Lee BH, Min X, Xu BE, Wedin K, Earnest S, Goldsmith EJ, Cobb MH (2005) Properties of WNK1 and implications for other family members. J Biol Chem 280:26653–26658

    CAS  PubMed  Google Scholar 

  23. Yang CL, Zhu X, Wang Z, Subramanya AR, Ellison DH (2005) Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport. J Clin Invest 115:1379–1387

    CAS  PubMed  Google Scholar 

  24. Dan I, Watanabe NM, Kusumi A (2001) The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol 11:220–230

    CAS  PubMed  Google Scholar 

  25. Strange K, Denton J, Nehrke K (2006) Ste20-type kinases: evolutionarily conserved regulators of ion transport and cell volume. Physiology (Bathesda) 21:61–68

    CAS  Google Scholar 

  26. Johnston AM, Naselli G, Gonez LJ, Martin RM, Harrison LC, Deaizpurua HJ (2000) SPAK, a Ste20/SPS1-related kinase that activates the p38 pathway. Oncogene 19:4290–4297

    CAS  PubMed  Google Scholar 

  27. Polek TC, Talpaz M, Spivak-Kroizman T (2006) The TNF receptor, RELT, binds SPAK and uses it to mediate p38 and JNK activation. Biochem Biophys Res Commun 343:125–134

    CAS  PubMed  Google Scholar 

  28. Yan Y, Nguyen H, Dalmasso G, Sitaraman SV, Merlin D (2007) Cloning and characterization of a new intestinal inflammation-associated colonic epithelial Ste20-related protein kinase isoform. Biochim Biophys Acta 1769:106–116

    CAS  PubMed  Google Scholar 

  29. Solomon A, Bandhakavi S, Jabbar S, Shah R, Beitel GJ, Morimoto RI (2004) Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments. Genetics 167:161–170

    CAS  PubMed  Google Scholar 

  30. Vitari AC, Deak M, Morrice NA, Alessi DR (2005) The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391:17–24

    CAS  PubMed  Google Scholar 

  31. Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S, Natsume T, Matsumoto K, Shibuya H (2005) WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem 280:42685–42693

    CAS  PubMed  Google Scholar 

  32. Anselmo AN, Earnest S, Chen W, Juang YC, Kim SC, Zhao Y, Cobb MH (2006) WNK1 and OSR1 regulate the Na+, K+, 2Cl cotransporter in HeLa cells. Proc Natl Acad Sci USA 103:10883–10888

    CAS  PubMed  Google Scholar 

  33. Gagnon KB, England R, Delpire E (2006) Volume sensitivity of cation-chloride cotransporters is modulated by the interaction of two kinases: SPAK and WNK4. Am J Physiol Cell Physiol 290:C134–C142

    CAS  PubMed  Google Scholar 

  34. Vitari AC, Thastrup J, Rafiqi FH, Deak M, Morrice NA, Karlsson HK, Alessi DR (2006) Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem J 397:223–231

    CAS  PubMed  Google Scholar 

  35. Richardson C, Rafiqi FH, Karlsson HK, Moleleki N, Vandewalle A, Campbell DG, Morrice NA, Alessi DR (2008) Activation of the thiazide-sensitive Na+–Cl cotransporter by the WNK-regulated kinases SPAK and OSR1. J Cell Sci 121:675–684

    CAS  PubMed  Google Scholar 

  36. Ponce-Coria J, San-Cristobal P, Kahle KT, Vazquez N, Pacheco-Alvarez D, de Los Heros P, Juárez P, Muñoz E, Michel G, Bobadilla NA, Gimenez I, Lifton RP, Hebert SC, Gamba G (2008) Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc Natl Acad Sci USA 105:8458–8463

    CAS  PubMed  Google Scholar 

  37. Frost JA, Steen H, Shapiro P, Lewis T, Ahn N, Shaw PE, Cobb MH (1997) Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J 16:6426–6438

    CAS  PubMed  Google Scholar 

  38. Coles LC, Shaw PE (2002) PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene 21:2236–2244

    CAS  PubMed  Google Scholar 

  39. Eblen ST, Slack JK, Weber MJ, Catling AD (2002) Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol 22:6023–6033

    CAS  PubMed  Google Scholar 

  40. Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB, Marshall MS, Weber MJ, Parsons JT, Catling AD (2003) PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol 162:281–291

    CAS  PubMed  Google Scholar 

  41. Park ER, Eblen ST, Catling AD (2007) MEK1 activation by PAK: a novel mechanism. Cell Signal 19:1488–1496

    CAS  PubMed  Google Scholar 

  42. Sorkin A, von Zastrow M (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3:600–614

    CAS  PubMed  Google Scholar 

  43. González-Gaitán M (2003) Signal dispersal and transduction through the endocytic pathway. Nat Rev Mol Cell Biol 4:213–224

    PubMed  Google Scholar 

  44. Cai H, Cebotaru V, Wang YH, Zhang XM, Cebotaru L, Guggino SE, Guggino WB (2006) WNK4 kinase regulates surface expression of the human sodium chloride cotransporter in mammalian cells. Kidney Int 69:2162–2170

    CAS  PubMed  Google Scholar 

  45. Subramanya AR, Liu J, Ellison DH, Wade JB, Welling PA (2009) WNK4 diverts the thiazide-sensitive NaCl cotransporter to the lysosome and stimulates AP-3 interaction. J Biol Chem 284:18471–18480

    CAS  PubMed  Google Scholar 

  46. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP (2003) WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 35:372–376

    CAS  PubMed  Google Scholar 

  47. Cope G, Murthy M, Golbang AP, Hamad A, Liu CH, Cuthbert AW, O’Shaughnessy KM (2006) WNK1 affects surface expression of the ROMK potassium channel independent of WNK4. J Am Soc Nephrol 17:1867–1874

    CAS  PubMed  Google Scholar 

  48. He G, Wang HR, Huang SK, Huang CL (2007) Intersectin links WNK kinases to endocytosis of ROMK1. J Clin Invest 117:1078–1087

    CAS  PubMed  Google Scholar 

  49. Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M (2005) Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436:78–86

    CAS  PubMed  Google Scholar 

  50. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    CAS  PubMed  Google Scholar 

  51. Vitari AC, Deak M, Collins BJ, Morrice N, Prescott AR, Phelan A, Humphreys S, Alessi DR (2004) WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate. Biochem J 378:257–268

    CAS  PubMed  Google Scholar 

  52. Jiang ZY, Zhou QL, Holik J, Patel S, Leszyk J, Coleman K, Chouinard M, Czech MP (2005) Identification of WNK1 as a substrate of Akt/protein kinase B and a negative regulator of insulin-stimulated mitogenesis in 3T3-L1 cells. J Biol Chem 280:21622–21628

    CAS  PubMed  Google Scholar 

  53. Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH (2005) WNK1 activates SGK1 to regulate the epithelial sodium channel. Proc Natl Acad Sci USA 102:10315–10320

    CAS  PubMed  Google Scholar 

  54. Xu BE, Stippec S, Lazrak A, Huang CL, Cobb MH (2005) WNK1 activates SGK1 by a phosphatidylinositol 3-kinase-dependent and non-catalytic mechanism. J Biol Chem 280:34218–34223

    CAS  PubMed  Google Scholar 

  55. Sale EM, Hodgkinson CP, Jones NP, Sale GJ (2006) A new strategy for studying protein kinase B and its three isoforms. Role of protein kinase B in phosphorylating glycogen synthase kinase-3, tuberin, WNK1, and ATP citrate lyase. Biochemistry 45:213–223

    CAS  PubMed  Google Scholar 

  56. Hong F, Larrea MD, Doughty C, Kwiatkowski DJ, Squillace R, Slingerland JM (2008) mTOR-raptor binds and activates SGK1 to regulate p27 phosphorylation. Mol Cell 30:701–711

    CAS  PubMed  Google Scholar 

  57. Massagué J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    PubMed  Google Scholar 

  58. Lee BH, Chen W, Stippec S, Cobb MH (2007) Biological cross-talk between WNK1 and the transforming growth factor beta-Smad signaling pathway. J Biol Chem 282:17985–17996

    CAS  PubMed  Google Scholar 

  59. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307:1621–1625

    CAS  PubMed  Google Scholar 

  60. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530

    CAS  PubMed  Google Scholar 

  61. Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8:361–375

    CAS  PubMed  Google Scholar 

  62. Prevarskaya N, Zhang L, Barritt G (2007) TRP channels in cancer. Biochem Biophys Acta 1772:937–946

    CAS  PubMed  Google Scholar 

  63. Jiang Y, Ferguson WB, Peng JB (2007) WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4. Am J Physiol Renal Physiol 292:F545–F554

    CAS  PubMed  Google Scholar 

  64. Zhang W, Na T, Peng JB (2008) WNK3 positively regulates epithelial calcium channels TRPV5 and TRPV6 via a kinase-dependent pathway. Am J Physiol Renal Physiol 295:F1472–F1484

    CAS  PubMed  Google Scholar 

  65. Fu Y, Subramanya A, Rozansky D, Cohen DM (2006) WNK kinases influence TRPV4 channel function and localization. Am J Physiol Renal Physiol 290:F1305–F1314

    CAS  PubMed  Google Scholar 

  66. Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8:56–61

    CAS  PubMed  Google Scholar 

  67. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    CAS  PubMed  Google Scholar 

  68. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662

    CAS  PubMed  Google Scholar 

  69. Thurmond DC, Pessin JE (2001) Molecular machinery involved in the insulin-regulated fusion of GLUT4-containing vesicles with the plasma membrane. Mol Membr Biol 18:237–245

    CAS  PubMed  Google Scholar 

  70. Oh E, Heise CJ, English JM, Cobb MH, Thurmond DC (2007) WNK1 is a novel regulator of Munc18c-syntaxin 4 complex formation in SNARE-mediated vesicle exocytosis. J Biol Chem 282:32613–32622

    CAS  PubMed  Google Scholar 

  71. Song J, Hu X, Riazi S, Tiwari S, Wade JB, Ecelbarger CA (2006) Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats. Am J Physiol Renal Physiol 290:F1055–F1064

    CAS  PubMed  Google Scholar 

  72. Lee BH, Min X, Heise CJ, Xu BE, Chen S, Shu H, Luby-Phelps K, Goldsmith EJ, Cobb MH (2004) WNK1 phosphorylates synaptotagmin 2 and modulates its membrane binding. Mol Cell 15:741–751

    CAS  PubMed  Google Scholar 

  73. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112

    CAS  PubMed  Google Scholar 

  74. Kahle KT, Wilson FH, Lalioti M, Toka H, Qin H, Lifton RP (2004) WNK kinases: molecular regulators of integrated epithelial ion transport. Curr Opin Nephrol Hypertens 13:557–562

    CAS  PubMed  Google Scholar 

  75. Gamba G (2005) Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension. Am J Physiol Renal Physiol 288:F245–F252

    CAS  PubMed  Google Scholar 

  76. Kahle KT, Rinehart J, Ring A, Gimenez I, Gamba G, Hebert SC, Lifton RP (2006) WNK protein kinases modulate cellular Cl-flux by altering the phosphorylation state of the Na–K–Cl and K–Cl cotransporters. Physiology (Bethesda) 21:326–335

    CAS  Google Scholar 

  77. Kahle KT, Ring AM, Lifton RP (2008) Molecular physiology of the WNK kinases. Annu Rev Physiol 70:329–355

    CAS  PubMed  Google Scholar 

  78. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795

    CAS  PubMed  Google Scholar 

  79. Kahle KT, Gimenez I, Hassan H, Wilson FH, Wong RD, Forbush B, Aronson PS, Lifton RP (2004) WNK4 regulates apical and basolateral Cl flux in extrarenal epithelia. Proc Natl Acad Sci USA 101:2064–2069

    CAS  PubMed  Google Scholar 

  80. Dorwart MR, Sahcheynikov N, Wang Y, Stippec S, Muallem S (2007) SLC26A9 is a Cl(−) channel regulated by the WNK kinases. J Physiol 584:333–345

    CAS  PubMed  Google Scholar 

  81. Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    CAS  PubMed  Google Scholar 

  82. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    CAS  PubMed  Google Scholar 

  83. Igney FH, Krammer P (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288

    CAS  PubMed  Google Scholar 

  84. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2006) Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys J 90:1546–1559

    CAS  PubMed  Google Scholar 

  85. Dogu Y, Díaz J (2009) Mathematical model of a network of interaction between p53 and Bcl-2 during genotoxic-induced apoptosis. Biophys Chem 143:44–54

    CAS  PubMed  Google Scholar 

  86. Veríssimo F, Silva E, Morris JD, Pepperkok R, Jordan P (2006) Protein kinase WNK3 increases cell survival in a caspase 3-dependent pathway. Oncogene 25:4172–4182

    PubMed  Google Scholar 

  87. MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7:591–600

    CAS  PubMed  Google Scholar 

  88. Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, Koch B, Haas SA, Paro R, Perrimon N (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303:832–835

    CAS  PubMed  Google Scholar 

  89. Choe K, Strange K (2007) Evolutionarily conserved WNK and Ste20 kinases are essential for acute volume recovery and survival following hypertonic shrinkage in Caenorhabditis elegans. Am J Physiol Cell Physiol 293:C915–C927

    CAS  PubMed  Google Scholar 

  90. Delpire E, Gagnon KB (2008) SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem J 409:321–331

    CAS  PubMed  Google Scholar 

  91. Richardson C, Alessi DR (2008) The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 121:3293–3304

    CAS  PubMed  Google Scholar 

  92. Thiery JP (2003) Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746

    CAS  PubMed  Google Scholar 

  93. Padua D, Massagué J (2009) Roles of TGFβ in metastasis. Cell Res 19:89–102

    CAS  PubMed  Google Scholar 

  94. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A (2008) HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 283:33437–33446

    CAS  PubMed  Google Scholar 

  95. Zeng G, Gao L, Yu RK (2000) Reduced cell migration, tumor growth and experimental metastasis of rat F-11 cells whose expression of ganglioside GD3 was suppressed. Int J Cancer 88:53–57

    CAS  PubMed  Google Scholar 

  96. Zeng G, Gao L, Xia T, Gu Y, Yu RK (2005) Expression of the mouse WNK1 gene in correlation with ganglioside GD3 and functional analysis of the mouse WNK1 promoter. Gene 344:233–239

    CAS  PubMed  Google Scholar 

  97. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    CAS  PubMed  Google Scholar 

  98. Zhang Z, Xu X, Zhang Y, Zhou J, Yu Z, He C (2009) LINGO-1 interacts with WNK1 to regulate Nogo-induced inhibition of neurite extension. J Biol Chem 284:15717–15728

    CAS  PubMed  Google Scholar 

  99. Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP (1991) Genes for epidermal growth factor receptor, transforming growth factor a, and epidermal growth f actor and their expression in human gliomas in vivo. Cancer Res 51:2164–2172

    CAS  PubMed  Google Scholar 

  100. Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, Türeci O, Sahin U, Pfreundschuh M, Old LJ (1998) Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer 76:652–658

    CAS  PubMed  Google Scholar 

  101. Ito M, Shichijo S, Tsuda N, Ochi M, Harashima N, Saito N, Itoh K (2001) Molecular basis of T cell-mediated recognition of pancreatic cancer cells. Cancer Res 61:2038–2046

    CAS  PubMed  Google Scholar 

  102. Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM, Corvol P, Jeunemaitre X (2003) Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol 23:9208–9221

    CAS  PubMed  Google Scholar 

  103. Holden S, Cox J, Raymond FL (2004) Cloning, genomic organization, alternative splicing and expression analysis of the human gene WNK3 (PRKWNK3). Gene 335:109–119

    CAS  PubMed  Google Scholar 

  104. Schwerk C, Schulze-Osthoff K (2005) Regulation of apoptosis by alternative pre-mRNA splicing. Mol Cell 19:1–13

    CAS  PubMed  Google Scholar 

  105. Venables JP (2006) Unbalanced alternative splicing and its significance in cancer. BioEssays 28:378–386

    CAS  PubMed  Google Scholar 

  106. Srebrow A, Kornblihtt AR (2006) The connection between splicing and cancer. J Cell Sci 119:2635–2641

    CAS  PubMed  Google Scholar 

  107. Glover M, Zuber AM, O’Shaughnessy KM (2009) Renal and brain isoforms of WNK3 have opposite effects on NCCT expression. J Am Soc Nephrol 20:1314–1322

    CAS  PubMed  Google Scholar 

  108. Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G, Teague J, Butler A, Edkins S, Stevens C, Parker A, O’Meara S, Avis T, Barthorpe S, Brackenbury L, Buck G, Clements J, Cole J, Dicks E, Edwards K, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Shepherd R, Small A, Solomon H, Stephens Y, Tofts C, Varian J, Webb A, West S, Widaa S, Yates A, Brasseur F, Cooper CS, Flanagan AM, Green A, Knowles M, Leung SY, Looijenga LH, Malkowicz B, Pierotti MA, Teh BT, Yuen ST, Lakhani SR, Easton DF, Weber BL, Goldstraw P, Nicholson AG, Wooster R, Stratton MR, Futreal PA (2005) Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 65:7591–7595

    CAS  PubMed  Google Scholar 

  109. Stephens P, Edkins S, Davies H, Greenman C, Cox C, Hunter C, Bignell G, Teague J, Smith R, Stevens C, O’Meara S, Parker A, Tarpey P, Avis T, Barthorpe A, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Edwards K, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Shepherd R, Small A, Solomon H, Stephens Y, Tofts C, Varian J, Webb A, West S, Widaa S, Yates A, Brasseur F, Cooper CS, Flanagan AM, Green A, Knowles M, Leung SY, Looijenga LH, Malkowicz B, Pierotti MA, Teh B, Yuen ST, Nicholson AG, Lakhani S, Easton DF, Weber BL, Stratton MR, Futreal PA, Wooster R (2005) A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat Genet 37:590–592

    CAS  PubMed  Google Scholar 

  110. Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    PubMed  Google Scholar 

  111. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158

    CAS  PubMed  Google Scholar 

  112. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    CAS  PubMed  Google Scholar 

  113. Choate KA, Kahle KT, Wilson FH, Nelson-Williams C, Lifton RP (2003) WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl-transporting epithelia. Proc Natl Acad Sci USA 100:663–668

    CAS  PubMed  Google Scholar 

  114. Rinehart J, Kahle KT, de Los Heros P, Vazquez N, Meade P, Wilson FH, Hebert SC, Gimenez I, Gamba G, Lifton RP (2005) WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl cotransporters required for normal blood pressure homeostasis. Proc Natl Acad Sci USA 102:16777–16782

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Drs. Fátima Veríssimo (Heidelberg), Karl Kunzelmann (Regensburg) and Jonathan Morris (London) for their helpful suggestions on the manuscript. Work in the authors’ laboratory was supported by the Fundação para a Ciência e a Tecnologia, Portugal (Programa de Financiamento Plurianual do CIGMH, grants POCTI/33221/99, POCTI/56294/04 and fellowship BD 11180/02 to S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moniz, S., Jordan, P. Emerging roles for WNK kinases in cancer. Cell. Mol. Life Sci. 67, 1265–1276 (2010). https://doi.org/10.1007/s00018-010-0261-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0261-6

Keywords

Navigation