Skip to main content

Advertisement

Log in

Kank proteins: structure, functions and diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The Kank family of proteins, Kank1–Kank4, are characterized by their unique structure, coiled-coil motifs in the N-terminal region, and ankyrin-repeats in the C-terminal region, with an additional motif, the KN motif, at the N-terminus. Kank1 was obtained by positional cloning of a tumor suppressor gene in renal cell carcinoma, while the other members were found by homology search. The family is involved in the regulation of actin polymerization and cell motility through signaling pathways containing PI3K/Akt and/or unidentified modulators/effectors. Their relationship to diseases such as cancer, and to neuronal and developmental disorders, will be an important subject of future study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sarkar S, Roy BC, Hatano N, Aoyagi T, Gohji K, Kiyama R (2002) A novel ankyrin repeat-containing gene (Kank) located at 9p24 is a growth suppressor of renal cell carcinoma. J Biol Chem 277:36585–36591

    Article  PubMed  CAS  Google Scholar 

  2. Zhu Y, Kakinuma N, Wang Y, Kiyama R (2008) Kank proteins: a new family of ankyrin-repeat domain-containing proteins. Biochim Biophys Acta 1780:128–133

    PubMed  CAS  Google Scholar 

  3. Rodley P, Hatano N, Nishikawa NS, Roy BC, Sarkar S, Kiyama R (2003) A differential genomic cloning method for cancer study: an outline and applications. Recent Res Dev Mol Biol 1:13–27

    CAS  Google Scholar 

  4. Roy BC, Aoyagi T, Sarkar S, Nomura K, Kanda H, Iwaya K, Tachibana M, Kiyama R (2005) Pathological characterization of Kank in renal cell carcinoma. Exp Mol Pathol 78:41–48

    Article  PubMed  CAS  Google Scholar 

  5. Roy BC, Kakinuma N, Kiyama R (2009) Kank attenuates actin remodeling by preventing interaction between IRSp53 and Rac1. J Cell Biol 184:253–267

    Article  PubMed  CAS  Google Scholar 

  6. Kakinuma N, Roy BC, Zhu Y, Wang Y, Kiyama R (2008) Kank regulates RhoA-dependent formation of actin stress fibers and cell migration via 14-3-3 in PI3K-Akt signaling. J Cell Biol 181:537–549

    Article  PubMed  CAS  Google Scholar 

  7. Ding M, Goncharov A, Jin Y, Chisholm AD (2003) C. elegans ankyrin repeat protein VAB-19 is a component of epidermal attachment structures and is essential for epidermal morphogenesis. Development 130:5791–5801

    Article  PubMed  CAS  Google Scholar 

  8. Wang Y, Kakinuma N, Zhu Y, Kiyama R (2006) Nucleo-cytoplasmic shuttling of human Kank protein accompanies intracellular translocation of β-catenin. J Cell Sci 119:4002–4010

    Article  PubMed  CAS  Google Scholar 

  9. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  10. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  PubMed  CAS  Google Scholar 

  11. Sorokina EM, Chernoff J (2005) Rho-GTPases: new members, new pathways. J Cell Biochem 94:225–231

    Article  PubMed  CAS  Google Scholar 

  12. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  13. Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30:13–19

    Article  PubMed  CAS  Google Scholar 

  14. Xin D, Hu L, Kong X (2008) Alternative promoters influence alternative splicing at the genomic level. PLoS ONE 3:e2377

    Article  PubMed  Google Scholar 

  15. Wang Y, Onishi Y, Kakinuma N, Roy BC, Aoyagi T, Kiyama R (2005) Alternative splicing of the human Kank gene produces two types of Kank protein. Biochem Biophys Res Commun 330:1247–1253

    Article  PubMed  CAS  Google Scholar 

  16. Zhang T, Haws P, Wu Q (2004) Multiple variable first exons: a mechanism for cell- and tissue-specific gene regulation. Genome Res 14:79–89

    Article  PubMed  CAS  Google Scholar 

  17. Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7(Suppl 1):S12.1–S12.14

    Article  Google Scholar 

  18. The UniProt Consortium (2008) The universal protein resource (UniProt). Nucl Acids Res 36:D190–D195

    Article  Google Scholar 

  19. Barrick D, Ferreiro DU, Komives EA (2008) Folding landscapes of ankyrin repeat proteins: experiments meet theory. Curr Opin Struct Biol 18:27–34

    Article  PubMed  CAS  Google Scholar 

  20. Li J, Mahajan A, Tsai MD (2006) Ankyrin repeat: a unique motif mediating protein–protein interactions. Biochemistry 45:15168–15178

    Article  PubMed  CAS  Google Scholar 

  21. Rose A, Meier I (2004) Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins. Cell Mol Life Sci 61:1996–2009

    Article  PubMed  CAS  Google Scholar 

  22. Gama-Carvalho M, Carmo-Fonseca M (2001) The rules and roles of nucleocytoplasmic shuttling proteins. FEBS Lett 498:157–163

    Article  PubMed  CAS  Google Scholar 

  23. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nat Med 8:1145–1152

    Article  PubMed  CAS  Google Scholar 

  24. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  PubMed  CAS  Google Scholar 

  25. Mhawech P (2005) 14-3-3 proteins- an update. Cell Res 15:228–236

    Article  PubMed  CAS  Google Scholar 

  26. Miki H, Yamaguchi H, Suetsugu S, Takenawa T (2000) IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408:732–735

    Article  PubMed  CAS  Google Scholar 

  27. Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A (2001) Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 11:1645–1655

    Article  PubMed  CAS  Google Scholar 

  28. Applewhite DA, Barzik M, Kojima S, Svitkina TM, Gertler FB, Borisy GG (2007) Ena/VASP proteins have an anti-capping independent function in filopodia formation. Mol Biol Cell 18:2579–2591

    Article  PubMed  CAS  Google Scholar 

  29. Scita G, Confalonieri S, Lappalainen P, Suetsugu S (2008) IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18:52–60

    Article  PubMed  CAS  Google Scholar 

  30. Mattila PK, Pykäläinen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, Lappalainen P (2007) Missing-in-metastasis and IRSp53 deform PI(4, 5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176:953–964

    Article  PubMed  CAS  Google Scholar 

  31. Nagase T, Seki N, Ishikawa K, Tanaka A, Nomura N (1996) Prediction of the coding sequences of unidentified human genes. V: the coding sequences of 40 new genes (KIAA0161–KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res 3:17–24

    Article  PubMed  CAS  Google Scholar 

  32. Hatano N, Nishikawa NS, McElgunn C, Sarkar S, Ozawa K, Shibanaka Y, Nakajima M, Gohji K, Kiyama R (2001) A comprehensive analysis of loss of heterozygosity caused by hemizygous deletions in renal cell carcinoma using a subtraction library. Mol Carcinog 31:161–170

    Article  PubMed  CAS  Google Scholar 

  33. Zimonjic DB, Simpson S, Popescu NC, DiPaolo JA (1995) Molecular cytogenetics of human papillomavirus-negative cervical carcinoma cell lines. Cancer Genet Cytogenet 82:1–8

    Article  PubMed  CAS  Google Scholar 

  34. Simon R, Burger H, Semjonow A, Hertle L, Terpe HJ, Bocker W (2000) Patterns of chromosomal imbalances in muscle invasive bladder cancer. Int J Oncol 17:1025–1029

    PubMed  CAS  Google Scholar 

  35. Huang SF, Hsu HC, Fletcher JA (1999) Investigation of chromosomal aberrations in hepatocellular carcinoma by fluorescence in situ hybridization. Cancer Genet Cytogenet 111:21–27

    Article  PubMed  CAS  Google Scholar 

  36. Shao J, Li Y, Li H, Wu Q, Hou J, Liew C (2000) Deletion of chromosomes 9p and 17 associated with abnormal expression of p53, p16/MTS1 and p15/MTS2 gene protein in hepatocellular carcinomas. Chin Med J 113:817–822

    PubMed  CAS  Google Scholar 

  37. Heidenblad M, Schoenmakers EF, Jonson T, Gorunova L, Veltman JA, van Kessel AG, Höglund M (2004) Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines. Cancer Res 64:3052–3059

    Article  PubMed  CAS  Google Scholar 

  38. Sato M, Takahashi K, Nagayama K, Arai Y, Ito N, Okada M, Minna JD, Yokota J, Kohno T (2005) Identification of chromosome arm 9p as the most frequent target of homozygous deletions in lung cancer. Genes Chromosomes Cancer 44:405–414

    Article  PubMed  CAS  Google Scholar 

  39. Lo KC, Stein LC, Panzarella JA, Cowell JK, Hawthorn L (2008) Identification of genes involved in squamous cell carcinoma of the lung using synchronized data from DNA copy number and transcript expression profiling analysis. Lung Cancer 59:315–331

    Article  PubMed  Google Scholar 

  40. Heyman M, Grandér D, Bröndum-Nielsen K, Liu Y, Söderhäll S, Einhorn S (1993) Deletions of the short arm of chromosome 9, including the interferon-alpha/-beta genes, in acute lymphocytic leukemia: studies on loss of heterozygosity, parental origin of deleted genes and prognosis. Int J Cancer 54:748–753

    Article  PubMed  CAS  Google Scholar 

  41. An HX, Claas A, Savelyeva L, Seitz S, Schlag P, Scherneck S, Schwab M (1999) Two regions of deletion in 9p23-24 in sporadic breast cancer. Cancer Res 59:3941–3943

    PubMed  CAS  Google Scholar 

  42. Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A, Passamonti F, Pietra D, Cazzola M, Skoda RC (2005) Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 106:3374–3376

    Article  PubMed  CAS  Google Scholar 

  43. Lerer I, Sagi M, Meiner V, Cohen T, Zlotogora J, Abeliovich D (2005) Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy. Hum Mol Genet 14:3911–3920

    Article  PubMed  CAS  Google Scholar 

  44. Vinci G, Chantot-Bastaraud S, El Houate B, Lortat-Jacob S, Brauner R, McElreavey K (2007) Association of deletion 9p, 46, XY gonadal dysgenesis and autistic spectrum disorder. Mol Hum Reprod 13:685–689

    Article  PubMed  CAS  Google Scholar 

  45. Willour VL, Yao Shugart Y, Samuels J, Grados M, Cullen B, Bienvenu OJIII, Wang Y, Liang KY, Valle D, Hoehn-Saric R, Riddle M, Nestadt G (2004) Replication study supports evidence for linkage to 9p24 in obsessive-compulsive disorder. Am J Hum Genet 75:508–513

    Article  PubMed  CAS  Google Scholar 

  46. Kaufmann E, Knöchel W (1996) Five years on the wings of fork head. Mech Dev 57:3–20

    Article  PubMed  CAS  Google Scholar 

  47. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–523

    Article  PubMed  CAS  Google Scholar 

  48. Griggs BL, Ladd S, Saul RA, DuPont BR, Srivastava AK (2008) Dedicator of cytokinesis 8 is disrupted in two patients with mental retardation and developmental disabilities. Genomics 91:195–202

    Article  PubMed  CAS  Google Scholar 

  49. Ruusala A, Aspenström P (2004) Isolation and characterisation of DOCK8, a member of the DOCK180-related regulators of cell morphology. FEBS Lett 572:159–166

    Article  PubMed  CAS  Google Scholar 

  50. Rakheja D, Lian F, Tomlinson GE, Ewalt DH, Schultz RA, Margraf LR (2005) Renal metanephric adenoma with previously unreported cytogenetic abnormalities: case report and review of the literature. Pediatr Dev Pathol 8:218–223

    Article  PubMed  Google Scholar 

  51. Walker MG, Volkmuth W (2002) Cell adhesion and matrix remodeling genes identified by co-expression analysis. Gene Funct Dis 3:109–112

    Article  CAS  Google Scholar 

  52. Harada JN, Bower KE, Orth AP, Callaway S, Nelson CG, Laris C, Hogenesch JB, Vogt PK, Chanda SK (2005) Identification of novel mammalian growth regulatory factors by genome-scale quantitative image analysis. Genome Res 15:1136–1144

    Article  PubMed  CAS  Google Scholar 

  53. Zhang Y, Zhang H, Liang J, Yu W, Shang Y (2007) SIP, a novel ankyrin repeat containing protein, sequesters steroid receptor coactivators in the cytoplasm. EMBO J 26:2645–2657

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research fund for promoting collaboration with small/medium enterprises from the National Institute of Advanced Industrial Science and Technology. We thank Dr. S. Sarkar for searching for mutations of the KANK1 gene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakinuma, N., Zhu, Y., Wang, Y. et al. Kank proteins: structure, functions and diseases. Cell. Mol. Life Sci. 66, 2651–2659 (2009). https://doi.org/10.1007/s00018-009-0038-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0038-y

Keywords

Navigation