Skip to main content
Log in

Hsp70 chaperones: Cellular functions and molecular mechanism

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract.

Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bukau B., Deuerling E., Pfund C. and Craig E. A. (2000) Getting newly synthesized proteins into shape. Cell 101: 119–122

    Article  PubMed  CAS  Google Scholar 

  2. Hartl F. U. and Hayer-Hartl M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852–1858.

    Article  PubMed  CAS  Google Scholar 

  3. Young J. C., Barral J. M. and Ulrich Hartl F. (2003) More than folding: localized functions of cytosolic chaperones. Trends. Biochem. Sci. 28: 541–547

    Article  PubMed  CAS  Google Scholar 

  4. Neupert W. and Brunner M. (2002) The protein import motor of mitochondria. Nat. Rev. Mol. Cell. Biol. 3: 555–565

    Article  PubMed  CAS  Google Scholar 

  5. Ryan M. T. and Pfanner N. (2002) Hsp70 proteins in protein translocation. Adv. Protein Chem. 59: 223–242

    Article  CAS  Google Scholar 

  6. Pratt W. B. and Toft D. O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood) 228: 111–133

    CAS  Google Scholar 

  7. Toft D. O. (1999) Control of hormone receptor function by molecular chaperones and folding catalysts. In: Molecular Chaperones and Folding Catalysts. Regulation, Cellular Function and Mechanism, pp. 313–327, Bukau B. (ed.), Harwood Academic Publishers, Amsterdam

    Google Scholar 

  8. Ben-Zvi A. P. and Goloubinoff P. (2001) Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J. Struct. Biol. 135: 84–93

    Article  PubMed  CAS  Google Scholar 

  9. Pierpaoli E. V., Sandmeier E., Baici A., Schönfeld H.-J., Gisler S. and Christen, P. (1997) The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. J. Mol. Biol. 269: 757–768

    Article  PubMed  CAS  Google Scholar 

  10. Mayer M. P., Rüdiger S. and Bukau B. (2000) Molecular basis for interactions of the DnaK chaperone with substrates. Biol. Chem. 381: 877–885

    Article  PubMed  CAS  Google Scholar 

  11. Slepenkov S. V. and Witt S. N. (2002) The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol. Microbiol. 45: 1197–1206

    Article  PubMed  CAS  Google Scholar 

  12. Glover J. R. and Lindquist S. (1998) Hsp104, Hsp70 and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73–82

    Article  PubMed  CAS  Google Scholar 

  13. Goloubinoff P., Mogk A., Peres Ben Zvi A., Tomoyasu T. and Bukau B. (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96: 13732–13737

    Article  PubMed  CAS  Google Scholar 

  14. Motohashi K., Watanabe Y., Yohda M. and Yoshida M. (1999) Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96: 7184–7189

    Article  PubMed  CAS  Google Scholar 

  15. Diamant S., Peres Ben-Zvi A., Bukau B. and Goloubinoff P. (2000) Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 275: 21107–21113

    Article  PubMed  CAS  Google Scholar 

  16. Ben-Zvi A., De Los Rios P., Dietler G. and Goloubinoff P. (2004) Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual Hsp70 chaperones. J. Biol. Chem. 279: 37298–37303

    Article  PubMed  CAS  Google Scholar 

  17. Pratt W. B. (1997) The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu. Rev. Pharmacol. Toxicol. 37: 297–326

    Article  PubMed  CAS  Google Scholar 

  18. Jäättelä M. (1999) Escaping cell death: survival proteins in cancer. Exp. Cell. Res. 248: 30–43

    Article  PubMed  Google Scholar 

  19. Jolly C. and Morimoto R. I. (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer. Inst. 92: 1564–1572

    Article  PubMed  CAS  Google Scholar 

  20. Bonini N. M. (2002) Chaperoning brain degeneration. Proc. Natl. Acad. Sci. USA 99Suppl. 4: 16407–16411

    Article  PubMed  CAS  Google Scholar 

  21. Sakahira H., Breuer P., Hayer-Hartl M. K. and Hartl F. U. (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc. Natl. Acad. Sci. USA 99Suppl. 4: 16412–16418

    Article  PubMed  CAS  Google Scholar 

  22. Millar D. G., Garza K. M., Odermatt B., Elford A. R., Ono N., Li, Z. et al. (2003) Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat. Med. 9: 1469–1476

    Article  PubMed  CAS  Google Scholar 

  23. Mayer M. P. (2004) Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev. Physiol. Biochem. Pharmacol. 9 Jul. [Epub ahead of print]

  24. Kregel K. C. (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92: 2177–2186

    PubMed  CAS  Google Scholar 

  25. Cagney G., Amiri S., Premawaradena T., Lindo M. and Emili A. (2003) In silico proteome analysis to facilitate proteomics experiments using mass spectrometry. Proteome Sci 1: 5

    Article  PubMed  Google Scholar 

  26. Gaiddon C., Lokshin M., Ahn J., Zhang T. and Prives C. (2001) A subset of tumor-derived mutant forms of p53 downregulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21: 1874–1887

    Article  PubMed  CAS  Google Scholar 

  27. King F. W., Wawrzynow A., Hohfeld J. and Zylicz M. (2001) Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J. 20: 6297–6305.

    Article  PubMed  Google Scholar 

  28. Meacham, G. C., Lu, Z., King, S., Sorscher, E., Tousson, A., and Cyr, D. M. (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18: 1492–1505

    Article  PubMed  CAS  Google Scholar 

  29. Shinder G. A., Lacourse M. C., Minotti S. and Durham, H. D. (2001) Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem. 276: 12791–12796

    Article  PubMed  CAS  Google Scholar 

  30. Roberts S. P. and Feder M. E. (1999) Natural hyperthermia and expression of the heat shock protein Hsp70 affect developmental abnormalities in Drosophila melanogaster. Oecologia 121: 323–329

    Article  Google Scholar 

  31. Rutherford S. L. and Lindquist S. (1998) Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342

    Article  PubMed  CAS  Google Scholar 

  32. Queitsch C., Sangster T. A. and Lindquist S. (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417: 618–624

    Article  PubMed  CAS  Google Scholar 

  33. Rogue P. J., Ritz M. F. and Malviya A. N. (1993) Impaired gene transcription and nuclear protein kinase C activation in the brain and liver of aged rats. FEBS Lett. 334: 351–354

    Article  PubMed  CAS  Google Scholar 

  34. Njemini R., Abeele M. V., Demanet C., Lambert M., Vandebosch S. and Mets T. (2002) Age-related decrease in the inducibility of heat-shock protein 70 in human peripheral blood mononuclear cells. J. Clin. Immunol. 22: 195–205

    Article  PubMed  CAS  Google Scholar 

  35. Meacham G. C., Patterson C., Zhang W., Younger J. M. and Cyr D. M. (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol. 3: 100–105

    Article  PubMed  CAS  Google Scholar 

  36. Urushitani M., Kurisu J., Tateno M., Hatakeyama S., Nakayama K., Kato S. et al. (2004) CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J. Neurochem. 90: 231–244

    Article  PubMed  CAS  Google Scholar 

  37. Leone G., Coffey M. C., Gilmore R., Duncan R., Maybaum L. and Lee P. W. (1996) C-terminal trimerization, but not Nterminal trimerization, of the reovirus cell attachment protein Is a posttranslational and Hsp70/ATP-dependent process. J. Biol. Chem. 271: 8466–8471

    Article  PubMed  CAS  Google Scholar 

  38. Young J. C., Hoogenraad N. J. and Hartl F. U. (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112: 41–50

    Article  PubMed  CAS  Google Scholar 

  39. Sakahira H. and Nagata S. (2002) Co-translational folding of caspase-activated DNase with Hsp70, Hsp40 and inhibitor of caspase-activated DNase. J. Biol. Chem. 277: 3364–3370

    Article  PubMed  CAS  Google Scholar 

  40. Jäättelä M., Wissing D., Kokholm K., Kallunki T. and Egeblad M. (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17: 6124–6134

    Article  PubMed  Google Scholar 

  41. Nylandsted J., Rohde M., Brand K., Bastholm L., Elling F. and Jaattela M. (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc. Natl. Acad. Sci. USA 97: 7871–7876

    Article  PubMed  CAS  Google Scholar 

  42. Klucken J., Shin Y., Masliah E., Hyman B. T. and McLean P. J. (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J. Biol. Chem. 279: 25497–25502

    Article  PubMed  CAS  Google Scholar 

  43. Gutsmann-Conrad A., Heydari A. R., You S. and Richardson A. (1998) The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Exp. Cell. Res. 241: 404–413

    Article  PubMed  CAS  Google Scholar 

  44. Ambra R., Mocchegiani E., Giacconi R., Canali R., Rinna A., Malavolta M. et al. (2004) Characterization of the hsp70 response in lymphoblasts from aged and centenarian subjects and differential effects of in vitro zinc supplementation. Exp. Gerontol. 39: 1475–1484

    Article  PubMed  CAS  Google Scholar 

  45. Flaherty K. M., Deluca-Flaherty C. and McKay D. B. (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346: 623–628

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Y. and Zuiderweg E. R. (2004) The 70-kDa heat shock protein chaperone nucleotide-binding domain in solution unveiled as a molecular machine that can reorient its functional subdomains. Proc. Natl. Acad. Sci. USA 101: 10272–10277

    Article  PubMed  CAS  Google Scholar 

  47. Gässler C. S., Wiederkehr T., Brehmer D., Bukau B. and Mayer, M. P. (2001) Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J. Biol. Chem. 276: 32538–32544

    Article  PubMed  Google Scholar 

  48. Ha J.-H., Johnson E. R., McKay D. B., Sousa M. C., Takeda S. and Wilbanks S. M. (1999) Structure and mechanism of Hsp70 proteins. In: Molecular Chaperones and Folding Catalysts. Regulation, Cellular Function and Mechanism, pp. 573–607, Bukau B. (ed.), Harwood Academic Publishers, Amsterdam

    Google Scholar 

  49. Karzai A. W. and McMacken R. (1996) A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. J. Biol. Chem. 271: 11236–11246

    Article  PubMed  CAS  Google Scholar 

  50. Barouch W., Prasad K., Greene L. and Eisenberg E. (1997) Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets. Biochemistry 36: 4303–4308

    Article  PubMed  CAS  Google Scholar 

  51. Laufen T., Mayer M. P., Beisel C., Klostermeier D., Reinstein J. and Bukau B. (1999) Mechanism of regulation of Hsp70 chaperones by DnaJ co-chaperones. Proc. Natl. Acad. Sci. USA 96: 5452–5457

    Article  PubMed  CAS  Google Scholar 

  52. Liberek K., Marszalek J., Ang D., Georgopoulos C. and Zylicz M. (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88: 2874–2878

    Article  PubMed  CAS  Google Scholar 

  53. Wall D., Zylicz M. and Georgopoulos C. (1994) The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for λ replication. J. Biol. Chem. 269: 5446–5451

    PubMed  CAS  Google Scholar 

  54. Gamer J., Multhaup G., Tomoyasu T., McCarty J. S., Rudiger S., Schonfeld H. J. et al. (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. EMBO J. 15: 607–617

    PubMed  CAS  Google Scholar 

  55. Laufen T., Zuber U., Buchberger A. and Bukau B. (1998) DnaJ proteins. In: Molecular Chaperones in Proteins: Structure, Function and Mode of Action, pp. 241–274, Fink A. L. and Goto Y. (eds), Marcel Dekker, New York

    Google Scholar 

  56. Misselwitz B., Staeck O. and Rapoport T. A. (1998) J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell. 2: 593–603

    Article  PubMed  CAS  Google Scholar 

  57. Silberg J. J. and Vickery L. E. (2000) Kinetic characterization of the ATPase cycle of the molecular chaperone Hsc66 from Escherichia coli. J. Biol. Chem. 275: 7779–7786

    Article  PubMed  CAS  Google Scholar 

  58. Silberg J. J., Tapley T. L., Hoff K. G. and Vickery L. E. (2004) Regulation of the HscA ATPase reaction cycle by the cochaperone HscB and the iron-sulfur cluster assembly protein IscU. J. Biol. Chem. 279: 53924–53931

    Article  PubMed  CAS  Google Scholar 

  59. Brehmer D., Rüdiger S., Gässler C. S., Klostermeier D., Packschies L., Reinstein J. et al. (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat. Struct. Biol. 8: 427–432

    Article  PubMed  CAS  Google Scholar 

  60. Harrison C. J., Hayer-Hartl M., Di Liberto M., Hartl F.-U. and Kuriyan J. (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276: 431–435

    Article  PubMed  CAS  Google Scholar 

  61. Sondermann H., Scheufler C., Schneider C., Hohfeld J., Hartl F. U. and Moarefi I. (2001) Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291: 1553–1557.

    Article  PubMed  CAS  Google Scholar 

  62. Briknarova K., Takayama S., Brive L., Havert M. L., Knee D. A., Velasco J. et al. (2001) Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat. Struct. Biol. 8: 349–352

    Article  PubMed  CAS  Google Scholar 

  63. Brehmer D., Gassler C., Rist W., Mayer M. P. and Bukau B. (2004) Influence of GrpE on DnaK-substrate interactions. J. Biol. Chem. 279: 27957–27964

    Article  PubMed  CAS  Google Scholar 

  64. Takayama S. and Reed J. C. (2001) Molecular chaperone targeting and regulation by BAG family proteins. Nat. Cell. Biol. 3: E237–241

    Article  PubMed  CAS  Google Scholar 

  65. Höhfeld J. and Jentsch S. (1997) GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J. 16: 6209–6216

    Article  PubMed  Google Scholar 

  66. Briknarova K., Takayama S., Homma S., Baker K., Cabezas E., Hoyt D. W. et al. (2002) BAG4/SODD protein contains a short BAG domain. J. Biol. Chem. 277: 31172–31178

    Article  PubMed  CAS  Google Scholar 

  67. Kabani M., Beckerich J. M. and Gaillardin C. (2000) Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol. Cell. Biol. 20: 6923–6934

    Article  PubMed  CAS  Google Scholar 

  68. Chung K. T., Shen Y. and Hendershot L. M. (2002) BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J. Biol. Chem. 277: 47557–47563

    Article  PubMed  CAS  Google Scholar 

  69. Steel G. J., Fullerton D. M., Tyson J. R. and Stirling C. J. (2004) Coordinated activation of Hsp70 chaperones. Science 303: 98–101

    Article  PubMed  CAS  Google Scholar 

  70. Craven R. A., Tyson J. R. and Stirling C. J. (1997) A novel subfamily of Hsp70s in the endoplasmic reticulum. Trends Cell Biol. 7: 277–282

    Article  CAS  Google Scholar 

  71. Tyson J. R. and Stirling C. J. (2000) LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J. 19: 6440–6452

    Article  PubMed  CAS  Google Scholar 

  72. Kabani M., McLellan C., Raynes D. A., Guerriero V. and Brodsky J. L. (2002) HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett. 531: 339–342

    Article  PubMed  CAS  Google Scholar 

  73. Kabani M., Beckerich J. M. and Brodsky J. L. (2002) Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol. Cell. Biol. 22: 4677–4689

    Article  PubMed  CAS  Google Scholar 

  74. Zhu X., Zhao X., Burkholder W. F., Gragerov A., Ogata C. M., Gottesman M. et al. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–1614

    Article  PubMed  CAS  Google Scholar 

  75. Rüdiger S., Germeroth L., Schneider-Mergener J. and Bukau B. (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16: 1501–1507

    Article  PubMed  Google Scholar 

  76. Rüdiger S., Schneider-Mergener J. and Bukau B. (2001) Its substrate specificity characterizes the DnaJ chaperone as scanning factor for the DnaK chaperone. EMBO J. 20: 1–9

    Article  Google Scholar 

  77. Tapley T. L. and Vickery L. E. (2004) Preferential substrate binding orientation by the molecular chaperone HscA. J. Biol. Chem. 279: 28435–28442

    Article  PubMed  CAS  Google Scholar 

  78. Cupp-Vickery J. R., Peterson J. C., Ta D. T. and Vickery L. E. (2004) Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. J. Mol. Biol. 342: 1265–1278

    Article  PubMed  CAS  Google Scholar 

  79. Mayer M. P., Schröder H., Rüdiger S., Paal K., Laufen T. and Bukau B. (2000) Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 7: 586–593

    Article  PubMed  CAS  Google Scholar 

  80. Pellecchia M., Montgomery D. L., Stevens S. Y., Vander Kooi C. W., Feng H., Gierasch L. M. et al. (2000) Structural insights into substrate binding by the molecular chaperone DnaK. Nat. Struct. Biol. 7: 298–303

    Article  PubMed  CAS  Google Scholar 

  81. Buczynski G., Slepenkov S. V., Sehorn M. G. and Witt S. N. (2001) Characterization of a lidless form of the molecular chaperone DnaK: deletion of the lid increases peptide on- and off-rate constants. J. Biol. Chem. 276: 27231–27236

    Article  PubMed  CAS  Google Scholar 

  82. Slepenkov S. V. and Witt S. N. (2002) Kinetic analysis of interdomain coupling in a lidless variant of the molecular chaperone DnaK: DnaK's lid inhibits transition to the low affinity state. Biochemistry 41: 12224–12235

    Article  PubMed  CAS  Google Scholar 

  83. Rüdiger S., Mayer M. P., Schneider-Mergener J. and Bukau B. (2000) Modulation of the specificity of the Hsp70 chaperone DnaK by altering a hydrophobic arch. J. Mol. Biol. 304: 245–251

    Article  PubMed  CAS  Google Scholar 

  84. Wang H., Kurochkin A. V., Pang Y., Hu W., Flynn G. C. and Zuiderweg E. R. P. (1998) NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Biochemistry 37: 7929–7940

    Article  PubMed  CAS  Google Scholar 

  85. Flynn G. C., Chappell T. G. and Rothman J. E. (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245: 385–390

    Article  PubMed  CAS  Google Scholar 

  86. Palleros D. R., Shi L., Reid K. L. and Fink A. L. (1994) Hsp70-protein complexes. J. Biol. Chem. 269: 13107–13114

    PubMed  CAS  Google Scholar 

  87. Schmid D., Baici A., Gehring H. and Christen P. (1994) Kinetics of molecular chaperone action. Science 263: 971–973

    Article  PubMed  CAS  Google Scholar 

  88. Pierpaoli E. V., Gisler S. M. and Christen P. (1998) Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ. Biochemistry 37: 16741–16748

    Article  PubMed  CAS  Google Scholar 

  89. Takeda S. and McKay D. B. (1996) Kinetics of peptide binding to the bovine 70 kDa heat shock cognate protein, a molecular chaperone. Biochemistry 35: 4636–4644

    Article  PubMed  CAS  Google Scholar 

  90. Sousa M. C. and McKay D. B. (1998) The hydroxyl of threonine 13 of the bovine 70-kDa heat shock cognate protein is essential for transducing the ATP-induced conformational change. Biochemistry 37: 15392–15399

    Article  PubMed  CAS  Google Scholar 

  91. Kelley W. L. (1999) Molecular chaperones: how J domains turn on Hsp70s. Curr. Biol. 9: R305–308

    Article  PubMed  CAS  Google Scholar 

  92. Kelley W. L. (1998) The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23: 222–227

    Article  PubMed  CAS  Google Scholar 

  93. Mayer M. and Bukau B. (1998) Hsp70 Chaperone systems: diversity of cellular functions and mechanism of action. Biol. Chem. 379: 261–268

    PubMed  CAS  Google Scholar 

  94. Cheetham M. l. E. and Caplan A. J. (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chap. 3: 28–36

    Article  CAS  Google Scholar 

  95. Linke K., Wolfram T., Bussemer J. and Jakob U. (2003) The roles of the two zinc binding sites in DnaJ. J. Biol. Chem. 278: 44457–44466

    Article  PubMed  CAS  Google Scholar 

  96. Kelley W. L. and Georgopoulos C. (1997) The T/t common exon of simian virus 40, JC and BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli DnaJ molecular chaperone. Proc. Natl. Acad. Sci. USA 94: 3679–3684

    Article  PubMed  CAS  Google Scholar 

  97. Takayama S., Xie Z. and Reed J. C. (1999) An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 274: 781–786

    Article  PubMed  CAS  Google Scholar 

  98. Thress K., Song J., Morimoto R. I. and Kornbluth S. (2001) Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper. EMBO J. 20: 1033–1041

    Article  PubMed  CAS  Google Scholar 

  99. Miki K. and Eddy E. M. (2002) Tumor necrosis factor receptor 1 is an ATPase regulated by silencer of death domain. Mol. Cell. Biol. 22: 2536–2543

    Article  PubMed  CAS  Google Scholar 

  100. Alberti S., Esser C. and Hohfeld J. (2003) BAG-1 — a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chap. 8: 225–231

    Article  Google Scholar 

  101. Brockmann C., Leitner D., Labudde D., Diehl A., Sievert V., Bussow K. et al. (2004) The solution structure of the SODD BAG domain reveals additional electrostatic interactions in the HSP70 complexes of SODD subfamily BAG domains. FEBS Lett. 558: 101–106

    Article  PubMed  CAS  Google Scholar 

  102. Gehring U. (2004) Biological activities of HAP46/BAG-1. The HAP46/BAG-1 protein: regulator of HSP70 chaperones, DNA-binding protein and stimulator of transcription. EMBO Rep. 5: 148–153

    Article  PubMed  CAS  Google Scholar 

  103. Doong H., Vrailas A. and Kohn E. C. (2002) What's in the ‘BAG'? — a functional domain analysis of the BAG-family proteins. Cancer Lett. 1188: 25–32

    Article  PubMed  CAS  Google Scholar 

  104. Takayama S., Krajewski S., Krajewski M., Kitada S., Zapata J. M., Kochel K. et al. (1998) Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res. 58: 3116–3131

    PubMed  CAS  Google Scholar 

  105. Lüders J., Demand J., Papp O. and Hohfeld J. (2000) Distinct isoforms of the cofactor BAG-1 differentially affect Hsc70 chaperone function. J. Biol. Chem. 275: 14817–14823

    Article  PubMed  Google Scholar 

  106. Lüders J., Demand J. and Hohfeld J. (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J. Biol. Chem. 275: 4613–4617

    Article  PubMed  Google Scholar 

  107. Song J., Takeda M. and Morimoto R. I. (2001) Bag1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat. Cell Biol. 3: 276–282

    Article  PubMed  CAS  Google Scholar 

  108. Höhfeld J., Minami Y. and Hartl F. U. (1995) Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83: 589–598

    Article  PubMed  Google Scholar 

  109. Gebauer M., Zeiner M. and Gehring U. (1997) Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity. FEBS Lett. 417: 109–113

    Article  PubMed  CAS  Google Scholar 

  110. Kanelakis K. C., Murphy P. J., Galigniana M. D., Morishima Y., Takayama S., Reed J. C. et al. (2000) hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1. Biochemistry 39: 14314–14321

    Article  PubMed  CAS  Google Scholar 

  111. Lambert C. and Prange R. (2003) Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: Implications for translocational regulation. Proc. Natl. Acad. Sci. USA 100: 5199–5204

    Article  PubMed  CAS  Google Scholar 

  112. Nelson G. M., Prapapanich V., Carrigan P. E., Roberts P. J., Riggs D. L. and Smith D. F. (2004) The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor. Mol. Endocrinol. 18: 1620–1630

    Article  PubMed  CAS  Google Scholar 

  113. Picard D., Khursheed B., Garabedian M. J. Fortin M. G., Lindquist S. and Yamamoto K. R. (1990) Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348: 166–168

    Article  PubMed  CAS  Google Scholar 

  114. Nicolet C. and Craig E. (1989) Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 3638–3646

    PubMed  CAS  Google Scholar 

  115. Smith D. F., Sullivan W. P., Marion T. N., Zaitsu K., Madden B., McCormick, D. J. et al. (1993) Identification of a 60-Kilodalton Stress-Related Protein, p60, which interacts with hsp90 and hsp70. Mol. Cell. Biol. 13: 869–876

    PubMed  CAS  Google Scholar 

  116. Scheufler C., Brinker A., Bourenkov G., Pegoraro S., Moroder L., Bartunik H., et al. (2000) Struture of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101: 199–210

    Article  PubMed  CAS  Google Scholar 

  117. Odunuga O. O., Hornby J. A., Bies C., Zimmermann R., Pugh, D. J. and Blatch G. L. (2003) Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. Molecular characterization of the critical contacts for successful binding and specificity. J. Biol. Chem. 278: 6896–6904

    Article  PubMed  CAS  Google Scholar 

  118. Morishima Y., Kanelakis K. C., Silverstein A. M., Dittmar K. D., Estrada L. and Pratt W. B. (2000) The Hsp organizer protein Hop enhances the rate of but is not essential for glucocorticoid receptor folding by the multiprotein Hsp90-based chaperone system. J. Biol. Chem. 275: 6894–6900

    Article  PubMed  CAS  Google Scholar 

  119. Wegele H., Haslbeck M., Reinstein J. and Buchner J. (2003) Sti1 is a novel activator of the Ssa proteins. J. Biol. Chem. 278: 25970–25976

    Article  PubMed  CAS  Google Scholar 

  120. Brychzy A., Rein T., Winklhofer K. F., Hartl F. U., Young J. C. and Obermann W. M. (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J. 22: 3613–3623

    Article  PubMed  CAS  Google Scholar 

  121. Ballinger C. A., Connell P., Wu Y., Hu Z., Thompson L. J., Yin, L. Y. et al. (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 19: 4535–4545

    PubMed  CAS  Google Scholar 

  122. Nikolay R., Wiederkehr T., Rist W., Kramer G., Mayer M. P. and Bukau B. (2004) Dimerization of the human E3 ligase CHIP via a coiled-coil domain is essential for its activity. J. Biol. Chem. 279: 2673–2678

    Article  PubMed  CAS  Google Scholar 

  123. Höhfeld J., Cyr D. M. and Patterson C. (2001) From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep. 2: 885–890

    Article  PubMed  Google Scholar 

  124. Connell P., Ballinger C. A., Jiang J., Wu Y., Thompson L. J., Hohfeld J. et al. (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell. Biol. 3: 93–96

    Article  PubMed  CAS  Google Scholar 

  125. Jiang J., Cyr D., Babbitt R. W., Sessa W. C. and Patterson C. (2003) Chaperone-dependent regulation of endothelial nitricoxide synthase intracellular trafficking by the co-chaperone/ubiquitin ligase CHIP. J. Biol. Chem. 278: 49332–49341

    Article  PubMed  CAS  Google Scholar 

  126. Dai Q., Zhang C., Wu Y., McDonough H., Whaley R. A., Godfrey V. et al. (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J. 22: 5446–5458

    Article  PubMed  CAS  Google Scholar 

  127. Pellecchia M., Szyperski T., Wall D., Georgopoulos C. and Wüthrich K. (1996) NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J. Mol. Biol. 260: 236–250

    Article  PubMed  CAS  Google Scholar 

  128. Li J., Qian X. and Sha B. (2003) The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11: 1475–1483

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Mayer.

Additional information

Received 21 October 2004; received after revision 24 November 2004; accepted 6 December 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, M.P., Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. CMLS, Cell. Mol. Life Sci. 62, 670 (2005). https://doi.org/10.1007/s00018-004-4464-6

Download citation

  • DOI: https://doi.org/10.1007/s00018-004-4464-6

Key words.

Navigation