Skip to main content
Log in

The pseudoautosomal regions of the human sex chromosomes

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

In human females, both X chromosomes are equivalent in size and genetic content, and pairing and recombination can theoretically occur anywhere along their entire length. In human males, however, only small regions of sequence identity exist between the sex chromosomes. Recombination and genetic exchange is restricted to these regions of identity, which cover 2.6 and 0.4 Mbp, respectively, and are located at the tips of the short and the long arm of the X and Y chromosome. The unique biology of these regions has attracted considerable interest, and complete long-range restriction maps as well as comprehensive physical maps of overlapping YAC clones are already available. A dense genetic linkage map has disclosed a high rate of recombination at the short arm telomere. A consequence of the obligatory recombination within the pseudoautosomal region is that genes show only partial sex linkage. Pseudoautosomal genes are also predicted to escape X-inactivation, thus guaranteeing an equal dosage of expressed sequences between the X and Y chromosomes. Gene pairs that are active on the X and Y chromosomes are suggested as candidates for the phenotypes seen in numerical X chromosome disorders, such as Klinefelter's (47,XXY) and Turner's syndrome (45,X). Several new genes have been assigned to the Xp/Yp pseudoautosomal region. Potential associations with clinical disorders such as short stature, one of the Turner features, and psychiatric diseases are discussed. Genes in the Xq/Yq pseudoautosomal region have not been identified to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aida T (1921) On the inheritance of colour in a fresh-water fishAplocheilus latipes Temminck and Schlegel, with special reference to the sex-linked inheritance. Genetics 6:554–573

    Google Scholar 

  • Armour JAL, Povey S, Jeremiah S, Jeffreys AJ (1990) Systematic cloning of human minisatellites from ordered array charomid libraries. Genomics 8:501–512

    Google Scholar 

  • Ballabio A, Bardoni B, Carrozzo R, Andria G, Persico G, Bick D, Campbell L, Ropers HH, Ferguson-Smith MA, Gimelli G, Fraccaro M, Maraschio P, Zuffardi O, Guioli S, Camerino G (1989) Contiguous gene syndromes due to deletions in the distal short arm of the human X chromosomes. Proc Natl Acad Sci USA 86:10001–10005

    Google Scholar 

  • Bardoni B, Zuffardi O, Guioli S, Ballabio A, Simi P, Cavalli P, Grimoldi MG, Fraccaro M, Camerino G (1991) A deletion map of the human Yq11 region: implications for the evolution of the Y chromosome and tentative mapping of a locus involved in spermatogenesis. Genomics 11:443–451

    Google Scholar 

  • Bickmore WA, Bird AP (1993) The use of restriction endonucleases to detect and isolate genes from mammalian cells. Methods Enzymol 216:224–244

    Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Google Scholar 

  • Bird AP (1987) CpG islands as gene markers in the vertebrate nucleus. Trends Genet 3:342–347

    Google Scholar 

  • Brown CJ, Willard HF (1989) Noninactivation of selectable human X-linked gene that complements a murine temperature-sensitive cell cycle defect. Am J Hum Genet 45:592–598

    Google Scholar 

  • Brown CJ, Lafreniere RG, Powers VE, Sebastio G, Ballabio A, Pettigrew AL, Ledbetter DH, Levy E, Craig IW, Willard HF (1991) Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349:82–84

    Google Scholar 

  • Brown WRA (1988) A physical map of the human pseudoautosomal region. EMBO J 7:2377–2385

    Google Scholar 

  • Brown WRA, MacKinnon PJ, Vallasante A, Spurr N, Buckle VJ, Dobson MJ (1990) Structure and polymorphism of human telomere-associated DNA. Cell 63:119–132

    Google Scholar 

  • Burgoyne PS (1982) Genetic homology and crossing over in the X and Y chromosomes of mammals. Hum Genet 61:85–90

    Google Scholar 

  • Cattanach BM, Rasberry C, Burtenshaw MO, Evans EP (1990) Illegitimate pairing of the X and Y chromosomes in Sxr mice. Genet Res 56:121–128

    Google Scholar 

  • Chandley AC, Mitchell AR (1988) Hypervariable minisatellite regions are sites for crossing-over at meiosis in man. Cytogenet Cell Genet 48:152–155

    Google Scholar 

  • Chandley Ac, Goetz P, Hargreave TB, Joseph AM, Speed RM (1984) On the nature and extent of XY pairing at meiotic prophase in man. Cytogenet Cell Genet 38:241–247

    Google Scholar 

  • Charlesworth B (1991) The evolution of sex chromosomes. Science 251:1030–1033

    Google Scholar 

  • Collinge J, Delisi LE, Boccio A, Johnstone EC, Lane A, Larkin C, Leach M, Lofthouse R, Owen F, Poulter M, Shah T, Walsh C, Crow TJ (1991) Evidence for a pseudoautosomal locus for schizophrenia using the method of affected sibling pairs. Br J Psychiatry 158:624–629

    Google Scholar 

  • Cooke HJ, Smith BA (1986) Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb Symp Quant Biol 51:213–219

    Google Scholar 

  • Cooke HJ, Brown WRA, Rappold GA (1984) Closely related sequences on human X and Y chromosomes outside the pairing region. Nature 311:259–261

    Google Scholar 

  • Cooke HJ, Brown RA, Rappold GA (1985) Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 317:687–692

    Google Scholar 

  • Cozens AL, Runswick MJ, Walker JE (1989) DNA sequences of two expressed nuclear genes for human mitochondrial ADT/ ATP translocase. J Mol Biol 206:261–280

    Google Scholar 

  • Cross S, Lindsey J, Fantes J, McKay S, McGill N, Cooke HJ (1990) The structure of a subtelomeric repeated sequence present on many human chromosomes. Nucleic Acids Res 18:6649–6657

    Google Scholar 

  • Crow TJ (1988) Sex chromosomes and psychosis: the case for a pseudoautosomal locus. Br J Psychiatry 153:675–683

    Google Scholar 

  • Crow TJ, DeLisi LE, Johnstone EC (1989) Concordance by sex in sibling pairs with schizophrenia is paternally inherited. Br J Psychiatry 154:92–97

    Google Scholar 

  • d'Amato T, Campion D, Gorwood P, Jay M, Sabate O, Petit C, Abbar M, Malafosse A, Leboyer M, Hillaire D, et al. (1992) Evidence for a pseudoautosomal locus for schizophrenia. Replication of a non-random segregation of alleles at the DXYS14 locus. Br J Psychiatry 161:55–58

    Google Scholar 

  • Disteche MC, Brannan CJ, Larsen A, Adler A, Schorderet DF, Gearing D, Copeland NG, Jenkins NA, Park LS (1992) The human pseudoautosomal GM-CSF receptor a subunit gene is autosomal in mouse. Nature Genet 1:333–336

    Google Scholar 

  • Eicher EM, Lee BK, Washburn LL, Hale DW, King TR (1992) Telomere-related markers for the pseudoautosomal region of the mouse genome. Proc Nad Acad Sci USA 89:2160–2164

    Google Scholar 

  • Ellis NA, Goodfellow PJ, Pym B, Smith M, Palmer M, Frischauf A-M, Goodfellow PN (1989) The pseudoautosomal boundary in man is defined by an Alu repeat sequence on the Y chromosome. Nature 337:81–84

    Google Scholar 

  • Ellis N, Yen P, Neiswanger K, Shapiro LJ, Goodfellow PN (1990) Evolution of the pseudoautosomal boundary in Old World monkey and great apes. Cell 63:977–986

    Google Scholar 

  • Ellison JW, Passage M, Yu Lc, Yen P, Mohandas TK, Shapiro L (1992) Direct isolation of human genes that escape X-inactivation. Somat Cell Molec Genet 18:259–268

    Google Scholar 

  • Ellison JW, Ramos C, Yen PH, Shapiro LJ (1993) Structure and expression of the human pseudoautosomal gene XE7. Hum Mol Genet 9:691–696

    Google Scholar 

  • Fischel-Ghodsian N, Nicholls RD, Higgs DR (1987) Unusual features of CpG-rich (HTF) islands in the human a globin complex: association with on-functional pseudogenes and presence within the 3′ portion of the v gene. Nucleic Acids Res 15:9215–9225

    Google Scholar 

  • Fisher EMC, Alitalo T, Luoh S-W, Chapelle A de la, Page DC (1990a) Human sex-chromosome-specific repeats within a region of pseudoautosomal/Yq homology. Genomics 7:625–628

    Google Scholar 

  • Fisher EMC, Beer-Romero P, Brown LG, Ridley A, McNeil JA, Bentley Lawrence J, Willard HF, Bieber FR, Page DC (1990b) Homologous ribosomal protein genes on the human X and Y chromosomes: escape from X inactivation and possible implications for Turner syndrome. Cell 63:1205–1218

    Google Scholar 

  • Foote S, Vollrath D, Hilton A, Page DC (1992) The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science 258:60–66

    Google Scholar 

  • Franco B, Guiloi S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P, Brown CJ, Willard HF, Lawrence C, Persico MG, Camerino G, Ballabio A (1991) A gene deletec in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353:529–536

    Google Scholar 

  • Freije D, Helms C, Watson MS, Donis-Keller H (1992) Identification of a second pseudoautosomal region near the Xq and Yq telomeres. Science 258:1784–1787

    Google Scholar 

  • Gelin C, Aubrit F, Phalipon A, Raynal B, Cole S, Kaczorek M, Bernard A (1989) The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J 8:3253–3259

    Google Scholar 

  • Goodfellow P, Banting G, Sheer D, Ropers HH, Caine A, Ferguson-Smith MA, Povey S, Voss R (1983) Genetic evidence that a Y-linked gene in man is homologous to a gene on the X chromosome. Nature 302:346–349

    Google Scholar 

  • Goodfellow PJ, Pym B, Mohandas T, Shapiro LJ (1984) The cell surface antigen locus MIC2X escapes X-inactivation. Am J Hum Genet 36:777–782

    Google Scholar 

  • Goodfellow PJ, Darling SM, Thomas NS, Goodfellow PN (1986) A pseudoautosomal gene in man. Science 234:740–743

    Google Scholar 

  • Gough NM, Nicola NA (1990) Granulocyte-macrophage colony stimulating factors. In: Dexter TM, Garland JM, Testa NG (eds) Colony-stimulating factors. Dekker, New York, pp 111–153

    Google Scholar 

  • Gough NM, Gearing DP, Nicola NA, Baker E, Pritchard M, Callen DF, Sutherland GR (1990) Localisation of the human GM-CSF receptor gene to the X-Y pseudoautosomal region. Nature 345:734–736

    Google Scholar 

  • Graves JAM (1987) The evolution of mammalian sex chromosomes and dosage compensation: clue from marsupials and monotremes. Trends Genet 3:252–256

    Google Scholar 

  • Haldane JBS (1936) A search for incomplete sex-linkage in man. Ann Eugenet 7:28–57

    Google Scholar 

  • Hale DW, Hunt PA, Tucker PK, Eicher EM (1991) Synapsis and obligate recombination between the sex chromosomes of male laboratory mice carrying the Y* rearrangement. Cytogenet Cell Genet 57:231–239

    Google Scholar 

  • Harbers K, Soriano P, Muller U, Jaenisch R (1986) High frequency of unequal recombination in pseudoautosomal region shown by proviral insertion in transgenic mouse. Nature 324:682–685

    Google Scholar 

  • Harris PC, Higgs DR (1993) The structure of the terminal region of the short arm of chromosome 16. In: Genome Analysis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Hassold TJ, Sherman SL, Pettay D, Page DC, Jacobs PA (1991) XY chromosome nondisjunction in man is associated with diminished recombination in the pseudoautosomal region. Am J Hum Genet 49:253–260

    Google Scholar 

  • Henke A, Wapenaar M, Ommen G v, Maraschio P, Camerino G, Rappold G (1991) Deletions within the pseudoautosomal region help map three new markers and indicate a possible role of this region in linear growth. Am J Hum Genet 49:811–819

    Google Scholar 

  • Henke A, Fischer C, Rappold GA (1993) Genetic map of the human pseudoautosomal region reveals a high rate of recombination in female meiosis at the Xp telomere. Genomics 18 (in press)

  • Holmquist G, Gray M, Porter T, Jordan J (1982) Characterization of Giemsa darkand light-band DNA. Cell 31:121–129

    Google Scholar 

  • Hultén M (1974) Chiasma distribution at diakinesis in the normal human male. Hereditas 76:55–78

    Google Scholar 

  • Huxley C, Fried M (1990) The mousesurfeit locus contains a cluster of six genes associated with four CpG-rich islands in 32 kilobases of genomic DNA. Mol Cell Biol 10:605–614

    Google Scholar 

  • Inglehearn CF, Cooke HJ (1990) A VNTR immediately adjacent to the human pseudoautosomal telomere. Nucleic Acids Res 18:471–476

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable “minisatellite” regions in human DNA. Nature 314:67–73

    Google Scholar 

  • Kaback DB, Guacci V, Barber D, Mahon JW (1992) Chromosome size-dependent control of meiotic recombination. Science 256:228–232

    Google Scholar 

  • Keitges E, Rivest M, Siniscalco M, Gartler SM (1985) X-linkage of steroid sulphatase in the mouse is evidence for a functional Y-linked allele. Nature 315:226–227

    Google Scholar 

  • Keitges EA, Schorderet DF, Gartler SM (1987) Linkage of the steroid sulfatase to the sex-reversed mutation in the mouse. Genetics 116:465–468

    Google Scholar 

  • Koenig M, Moisan JP, Heilig R, Mandel JL (1985) Homologies between X and Y chromosomes detected by DNA probes: localisation and evolution. Nucleic Acids Res 13:5485–5501

    Google Scholar 

  • Koller PC, Darlington CD (1934) The genetical and mechanical properties of the sex chromosomes. 1.Rattus norvegiens. J Genet 29:159–173

    Google Scholar 

  • Korenberg JR, Rykowski MC (1988) Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53:391–400

    Google Scholar 

  • Kremer E, Baker E, D'Andrea RI, Slim R, Phillips H, Moretti PAB, Lopez AF, Petit C, Vadas MA, Sutherland GR, Goodall GI (1993) A cytokine receptor gene cluster in the XY pseudoautosomal region? Blood 82:22–28

    Google Scholar 

  • Laune DA, Hultén MA (1985) Further studies on chiasma distribution and interference in the human male. Ann Hum Genet 49:203–214

    Google Scholar 

  • Legouis R, Hardelin J-P, Levilliers J, Claverie J-M, Compain S, Wunderle V, Millasseau P, Le Paslier D, Cohen D, Caterina D, Bougueleret L, Delemarre-Van de Waal H, Lutfalla G, Weissenbach J, Petit C (1991) The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67:423–435

    Google Scholar 

  • Levilliers J, Quack B, Weissenbach J, Petit C (1989) Exchange of terminal portions of Xand Y-chromosomal short arms in human XY females. Proc Natl Acad Sci USA 86:2296–2300

    Google Scholar 

  • Matsuda Y, Hirobe T, Chapman VM (1991) Genetic basis of X-Y chromosome dissociation and male sterility in interspecific hybrids. Proc Natl Acad Sci USA 88:4850–4854

    Google Scholar 

  • Matsuda Y, Moens PB, Chapman VM (1992) Deficiency of X and Y chromosomal pairing at meiotic prophase in spermatocytes of sterile interspecific hybrids between laboratory mice (Mus domesticus) andMus spretus. Chromosoma 101:483–492

    Google Scholar 

  • Milatovich A, Kitamura T, Miyaiima A, Francke U (1993) Gene for the α-subunit of the human interleukin-3 receptor (IL3RA) localized to the X-Y pseudoautosomal region. Am J Hum Genet 53 (in press)

  • Moses MJ, Counce SJ, Paulson DF (1975) Synaptonemal complex complement of man in spreads of spermatocytes, with details of the sex chromosome pair. Science 187:363–365

    Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LS, Dami M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu J-R (1988) A highly conserved repetitive DNA sequence, (TTAGGG) n , present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626

    Google Scholar 

  • Müller U, Schempp W (1982) Homologous early replication patterns of the distal short arms of prometaphasic X and Y chromosomes. Hum Genet 60:274–275

    Google Scholar 

  • NIH/CEPH Collaborative Mapping Group (1992) A comprehensive genetic linkage map of the human genome. Science 258:67–76

    Google Scholar 

  • Ogata T, Goodfellow P, Petit C, Aya M, Matsuo N (1992a) Short stature in a girl with a terminal deletion distal to DXYS15: localisation of a growth gene(s) in the pseudoautosomal region. J Med Genet 29:455–459

    Google Scholar 

  • Ogata T, Petit C, Rappold G, Matsuo N, Matsumoto T, Goodfellow P (1992b) Localisation of a pseudoautosomal growth gene(s). J Med Genet 29:624–628

    Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Page DC, Harper ME, Love J, Botstein D (1984) Occurrence of a transposition from the X-chromosome long arm to the Y-chromosome short arm during human evolution. Nature 311:119–123

    Google Scholar 

  • Page DC, Chapelle A de la, Weissenbach J (1985) Chromosome Y-specific DNA in related human XX males. Nature 315:224–226

    Google Scholar 

  • Page DC, Bieker K, Brown LG, Hinton S, Leppert M, Lalouel JM, Lathrop M, Nyström-Lahti M, Chapelle A de la, White R (1987a) Linkage, physical mapping and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosomes. Genomics 1:243–256

    Google Scholar 

  • Page DC, Mosher R, Simpson EM, Fisher EMC, Mardon G, Pollack J, McGillivray B, Chapelle A de la, Brown LG (1987b) The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51:1091–1104

    Google Scholar 

  • Pearson PL, Bobrow M (1970) Definitive evidence for the short arm of the Y chromosome associating with the X chromosome during meiosis in the human male. Nature 226:959–961

    Google Scholar 

  • Petit C, Chapelle A de la, Levilliers J, Castillo S, Noel B, Weissenbach J (1987) An abnormal terminal X-Y interchange accounts for most but not all cases of human XX maleness. Cell 49:595–602

    Google Scholar 

  • Petit C, Levilliers J, Weissenbach J (1988) Physical mapping of the human pseudoautosomal region; comparison with genetic linkage map. EMBO J 7:2369–2376

    Google Scholar 

  • Philip U (1935) Crossing-over between the Xand Y-chromosomes inDrosophila mela.nogaster. J Genet 31:341

    Google Scholar 

  • Polani PE (1982) Pairing of X and Y chromosomes, non-inactivation of X-linked genes, and the maleness factor. Hum Genet 60:207–211

    Google Scholar 

  • Ponticelli AS, Smith GR (1992) Chromosomal context dependence of a eukaryotic recombinational hot spot. Proc Natl Acad Sci USA 89:227–231

    Google Scholar 

  • Poustka A, Pohl TM, Barlow DP, Frischauf AM, Lehrach H (1987) Construction and use of human chromosome jumping libraries from NotI-digested DNA. Nature 325:353–355

    Google Scholar 

  • Ragoussis J, Monaco A, Mockridge I, Kendall E, Duncan Campbell R, Trowsdale J (1991) Cloning of the HLA class II region in yeast artificial chromosomes. Proc Natl Acad Sci USA 88:3753–3757

    Google Scholar 

  • Rappold GA, Lehrach H (1988) A long range restriction map of the pseudoautosomal region by partial digest PFGE analysis from the telomere. Nucleic Acids Res 16:5361–5377

    Google Scholar 

  • Rappold GA, Willson TA, Henke A, Gough NM (1992) Arrangement and localisation of the human GM-CSF receptor gene within the X-Y pseudoautosomal region. Genomics 14:455–461

    Google Scholar 

  • Roeder GS (1990) Chromosome synapsis and genetic recombination. Trends Genet 6:385–389

    Google Scholar 

  • Ross LO, Treco D, Nicolas A, Szostak JW, Dawson D (1992) Meiotic recombination on artificial chromosomes in yeast. Genetics 131:541–550

    Google Scholar 

  • Rouyer F, Simmler M-C, Johnsson C, Vergnaud G, Cooke HJ, Weissenbach J (1986a) A gradient of sex linkage in the pseudoautosomal region of the human sex chromosomes. Nature 319:291–295

    Google Scholar 

  • Rouyer F, Simmler M-C, Vergnaud G, Johnsson C, Levilliers J, Petit C, Weissenbach J (1986b) The pseudoautosomal region of the human sex chromosomes. Cold Spring Harb Symp Quant Biol 51:221–228

    Google Scholar 

  • Rouyer F, Chapelle A de la, Andersson M, Weissenbach J (1990) An interspersed repeated sequence specific for human subtelomeric regions. EMBO J 9:505–514

    Google Scholar 

  • Royle NJ, Clarkson Re, Wong Z, Jeffreys AJ (1988) Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3:352–360

    Google Scholar 

  • Schempp W, Meer B (1983) Cytologie evidence for three human X-chromosomal segments escaping inactivation. Hum Genet 63:171–174

    Google Scholar 

  • Schiebel K, Weiss B, Wöhrle D, Rappold GA (1993) A human pseudoautosomal gene, ADP/ATP translocase, escapes X-inactivation whereas a homologue on Xq is subject to X-inactivation. Nature Genet 3:82–87

    Google Scholar 

  • Schneider-Gädicke A, Beer-Romero P, Brown LG, Nussbaum R, Page DC (1989) ZFX has a gene structure similar to ZFY, the putative sex determinant, and escapes X-inactivation. Cell 57:1247–1258

    Google Scholar 

  • Sharp P (1982) Sex chromosome pairing during male meiosis in marsupials. Chromosoma 86:27–47

    Google Scholar 

  • Simmler M-C, Rouyer F, Vergnaud G, Nyström-Lahti M, Ngo KY, Chapelle A de la, Weissenbach J (1985) Pseudoautosomal DNA sequences in the pairing region of the human sex chromosomes. Nature 317:692–697

    Google Scholar 

  • Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf A-M, Lovell-Badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNAbinding motif. Nature 346:240–244

    Google Scholar 

  • Singh L, Jones KW (1985) Snakes and the evolution of sex chromosomes. Trends Genet 1:55–61

    Google Scholar 

  • Slim R, Le Paslier D, Compain S, Levilliers J, Ougen P, Billault A, Conohue SJ, Klein DC, Mintz L, Bernheim A, Cohen D, Weissenbach J, Petit C (1993a) Construction of a yeast artificial chromosome contig spanning the pseudoautosomal region and isolation of 25 new sequence-tagged sites. Genomics 16:691–697

    Google Scholar 

  • Slim R, Levilliers J, Lüdecke HF, Claussen U, Nguyen VC, Gough NM, Horsthemke B, Petit C (1993b) A human pseudoautosomal gene encodes the ANT3 ADP/ATP translocase and escapes Xinactivation. Genomics 16:26–33

    Google Scholar 

  • Smith MJ, Goodfellow PJ, Goodfellow PN (1983) The genomic organisation of the human pseudoautosomal gene MIC2 and the detection of a related locus. Hum Mol Genet 4:417–422

    Google Scholar 

  • Solari AJ (1980) Synaptenomal complexes and associated structure sin microspread human spermatocytes. Chromosoma 81:315–337

    Google Scholar 

  • Soriano P, Keitges EA, Schorderet DF, Harbers K, Gartier SM, Jaenisch R (1987) High rate of recombination and double crossovers in the mouse pseudoautosomal region during male meiosis. Proc Natl Acad Sci USA 84:7218–7220

    Google Scholar 

  • Speed RM, Chandley AC (1990) Prophase of meiosis in human spermatocytes analysed by EM microspreading in infertile men and their controls and comparisons with human oocytes. Hum Genet 84:547–554

    Google Scholar 

  • Spencer JA, Sinclair AH, Watson JM, Graves JAM (1991) Genes on the short arm of the human X chromosome are not shared with the marsupial X. Genomics 11:339–345

    Google Scholar 

  • Steinmetz M, Uematsu Y, Fischer-Lindahl K (1987) Hotspots of homologous recombination in mammalian genomes. Trends Genet 3:7–10

    Google Scholar 

  • Wahls WP, Wallace LJ, Moore PD (1990) Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60:95–103

    Google Scholar 

  • Watson JM, Spencer JA, Riggs AD, Graves JAM (1990) The X chromosomes of monotremes share a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation. Proc Natl Acad Sci USA 87:7125–7129

    Google Scholar 

  • Weber W, Weissenbach J, Schempp W (1987) Conservation of human-derived pseudoautosomal sequences on the sex chromosomes of the great apes. Cytogenet Cell Genet 45:26–29

    Google Scholar 

  • White MA, Wierdl M, Detloff P, Petes TD (1991) DNA-binding protein RAP1 stimulates meiotic recombination at the HIS4 locus in yeast. Proc Natl Acad Sci USA 88:9755–9759

    Google Scholar 

  • Yen PH, Allen E, Marsh B, Mohandas T, Wong N, Taggart RT, Shapiro LJ (1987) Cloning and expression of steroid sulfatase cDNA and the frequent occurrence of deletions in STS deficiency: implications for X-Y interchange. Cell 49:443–454

    Google Scholar 

  • Yen PH, Marsh B, Allen E, Tsai SP, Ellison J, Connolly L, Neiswanger K, Shapiro LJ (1988) The human X-linked steroid sulfatase gene and Y-encoded pseudogene: evidence for an inversion of the Y-chromosome during primate evolution. Cell 55:1123–1135

    Google Scholar 

  • Yen PH, Tsai S-P, Wenger SL, Steele MW, Mohandas TK, Shapiro LJ (1991) X/Y translocations resulting from recombination between homologous sequences on Xp and Yp. Proc Natl Acad Sci USA 88:8944–8948

    Google Scholar 

  • Yen PH, Ellison J, Salido EC, Mohandas T, Shapiro L (1992) Isolation of a new gene from the distal short arm of the human X chromosome that escapes X-inactivation. Hum Mol Genet 1:47–52

    Google Scholar 

  • Yi H, Donohue SJ, Klein DC, McBride OW (1993) Localization of the hydroxyindole-O-methyltransferase gene to the pseudoautosomal region: implications for mapping of psychiatric disorders. Hum Mol Genet 2:127–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rappold, G.A. The pseudoautosomal regions of the human sex chromosomes. Hum Genet 92, 315–324 (1993). https://doi.org/10.1007/BF01247327

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01247327

Keywords

Navigation