Skip to main content
Log in

Lack ofp53 mutations and loss of heterozygosity in non-cultured human melanocytic lesions

Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

In this study we analysed snap-frozen surgical resections of 16 superficial spreading melanomas, 13 nodular malignant melanomas, 2 lentigo maligna melanomas, 1 dysplastic nevus, 1 congenital nevus and 5 normal nevi from 38 patients for point mutations in the humanp53 gene at exons 5–8 by polymerase chain reaction/single-strand conformation polymorphism as well as for loss of heterozygosity ofp53 by restriction-fragment-length polymorphism/polymerase chain reaction in order to determine whetherp53 aberrations are associated with melanoma subtypes. In addition, we analysed six melanoma cell lines for point mutations inp53. Our results revealed the absence of point mutations and loss of heterozygosity in all fresh resected lesions. However, a TAC (Tyr) to TGC (Cys) transition at codon 163 in exon 5 was found in one cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

LOH :

loss of heterozygosity

MF :

mutation framework

PCR :

polymerase chain reaction

SSCP :

single-strand conformation polymorphism

NMM :

nodular malignant melanoma

LMM :

lentigo maligna melanoma

SSM :

superficial spreading melanoma

References

  • Albino AP, Shea CR, McNutt NS (1992) Oncogenes in melanomas. J Dermatol 19:853–867

    PubMed  Google Scholar 

  • Albino AP, Vidal MJ, McNutt NS, Shea CR, Prieto VG, Nanus DM, Palmer JM, Hayward NK (1994) Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res 4:35–45

    Google Scholar 

  • Barker D, Dixon K, Medrano EE, Smalara D, Im S, Mitchell D, Babcock G, Abdelmalek ZA (1995) Comparison of the responses of human melanocytes with different melanin contents to ultraviolet B radiation. Cancer Res 55:4041–4046

    PubMed  Google Scholar 

  • Bartek J, Bartkova J, Vojtesek B (1991) Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 6:1699–1703

    PubMed  Google Scholar 

  • Basu-Modak S, Tyrell RM (1993) Singlet oxygen: a primary effector in the ultraviolet A/near-visible light induction of the human heme oxygenase gene. Cancer Res 53:4505–4510

    PubMed  Google Scholar 

  • Beehler BC, Przybyszewski J, Box HB, Kulesz-Martin MF (1992) Formation of 8hydroxyguanosine within DNA of mouse keratinocytes exposed in culture to UVB and H2O2. Carcinogenesis 13:2003–2007

    PubMed  Google Scholar 

  • Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous-cell carcinoma. Proc Natl Acad Sci USA 88:10124–10128

    PubMed  Google Scholar 

  • Brash DE, Ziegler A, Simon JA, Kunala S (1992) UV mutation spectrum in the p53 gene in basal-cell carcinoma of the skin. 83rd annual meeting of the American Association for Cancer Research, San Diego. Proc Am Assoc Cancer Res 33:671

    Google Scholar 

  • Calle-Martin O de la, Fabregat V, Romero M, Soler J, Vives J, Yague J (1990)AccII polymorphism of the p53 gene. Nucleic Acids Res 18:4963

    Google Scholar 

  • Castresana JS, Rubio MP, Vazquez JJ, Idoate M, Sober AJ, Seizinger BR, Barnhill RL (1993) Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int J Cancer 55:562–565

    PubMed  Google Scholar 

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J Biol Chem 267:166–172

    PubMed  Google Scholar 

  • Cristofilini M, Boi S, Girlando S (1993) p53 protein expression in nevi and melanomas. Arch Dermatol 129:739–743

    PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    PubMed  Google Scholar 

  • Dumaz N, Stary A, Soussi T, Daya-Grosjean L, Sarasin A (1994) Can we predict solar ultraviolet radiation as the causal event in human tumours by analysisng the mutation spectra of the p53 gene? Mutat Res 307:375–386

    PubMed  Google Scholar 

  • Elwood JM (1993) Recent developments in melanoma epidemiology. Melanoma Res 3:149–156

    PubMed  Google Scholar 

  • Epe B (1991) Genotoxicity of singlet oxygen. Chem Biol Interact. 80:239–260

    PubMed  Google Scholar 

  • Epe B, Pflaum M, Boiteaux S (1993) DNA damage induced by photosensitizers in cellular and cell-free systems. Mutat Res 299:135–145

    PubMed  Google Scholar 

  • Erlich HA (1989) PCR technologies: principles and applications for DNA amplification. Stockton Press, New York

    Google Scholar 

  • Fakharzedeh SS, Trusko SP, George DL (1991) Tumourigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumour cell line. EMBO J 10:1565–1569

    PubMed  Google Scholar 

  • Farmer G, Bargonetti J, Zhu H, Friedman P, Prywes R, Prywes C (1992) Wildtype p53 activates transcription in vitro. Nature 358:83–86

    PubMed  Google Scholar 

  • Finlay CA, Hinds PW, Tan TH (1988) Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 8:531–539

    PubMed  Google Scholar 

  • Florenes VA, Oyjord T, Holm R, Skrede M, Borresen AL, Nesland JM, Fodstad O (1994) TP 53 allele loss, mutations and expression in malignant melanoma. Br J Cancer 69:253–259

    PubMed  Google Scholar 

  • Fountain JW, Bale SJ, Housman DE, Dracopoli NL (1990) Genetics of melanoma. Cancer Surv 9:645–671

    PubMed  Google Scholar 

  • Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, Magrath IT, Knowles DM, Dalla-Favera R (1991) p53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 88:5413–5417

    PubMed  Google Scholar 

  • Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (1993) An introduction to genetic analysis. Freeman, New York

    Google Scholar 

  • Gruis NA, Weaver-Feldhaus J, Liu Q, Frye, C, Eeles R, Orlow I, Lacombe L, Ponce-Castaneda V, Lianes P, Latres E, Skolnick M, Cordon-Cardo C, Kamb A (1995) Genetic evidence in melanoma and bladder cancers that p16 and p53 function in separate pathways of tumour suppression. Am J Pathol 146:1199–1206

    PubMed  Google Scholar 

  • Harris CC (1991) Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res 51:5023s-5044s

    PubMed  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    PubMed  Google Scholar 

  • Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R, Harris CC (1994) Database of p53 gene somatic mutations in human tumours and cell lines. Nucleic Acids Res 22:3551–3555

    PubMed  Google Scholar 

  • Jafari M, Papp T, Kirchner S, Diener U, Henschler D, Burg G, Schiffmann D (1995) Analysis ofras mutations in human melanocytic lesions: activation of theras gene seems to be associated with the nodular type of malignant melanoma. J Cancer Res Clin Oncol 121:23–30

    PubMed  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 in the cellular response to DNA damage. Cancer Res 51:6304–6311

    PubMed  Google Scholar 

  • Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711

    PubMed  Google Scholar 

  • Lane DP (1992) p53, guardian of the genome. Nature 358:15–16

    PubMed  Google Scholar 

  • Lane DP, Crawford L (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    PubMed  Google Scholar 

  • Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351:453–456

    PubMed  Google Scholar 

  • Li FP, Fraumeni JF, Mulvihill JJ, Blattner WA, Dreyfuss MG, Tucker MA, Miller RW (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48:5358–5362

    PubMed  Google Scholar 

  • Loganzo F, Nabeya Y, Maslak P (1994) Stabilization of p53 protein is a critical response to UV radiation in human melanocytes: Implications for melanoma development. Mol Cell Differ 2: 19–39

    Google Scholar 

  • Lübbe J, Reichel M, Burg G, Kleihus P (1994) Absence of p53 gene mutations in cutaneous melanoma. J Invest Dermatol 102: 819–821

    PubMed  Google Scholar 

  • MacGeoch C, Barnes DM, Newton JA, Mohammed S, Hogson SV, Ng M, Bishop DT, Spurr NK (1993) p53 protein detected by immunohistochemical staining is not always mutant. Dis Markers 11:239–250

    PubMed  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni JJ, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science 250:1233–1238

    PubMed  Google Scholar 

  • Montano X, Shamsher M, Whitehead P, Dawson K, Newton J (1994) Analysis of p53 in cutaneous melanoma cell lines. Oncogene 9:1455–1459

    PubMed  Google Scholar 

  • Nigro JM, Baker SJ, Preisinger AC (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705–708

    PubMed  Google Scholar 

  • Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    PubMed  Google Scholar 

  • Rauth S, Kichina J, Green A, Bratescu L, Das-Gupta TK (1994) Establishment of a human melanoma cell line lacking p53 expression and spontaneously metastasising in nude mouse. Anticancer Res 14:2457–2463

    PubMed  Google Scholar 

  • Scheffner M, Werness BA, Huibregste JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papilloma virus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    PubMed  Google Scholar 

  • Soussi T, Caron de Fromentel C, Mechali M, May P, Kress M (1987) Cloning and characterisation of a cDNA fromXenopus laevis coding for a protein homologous to human and murine p53. Oncogene 1:71–78

    PubMed  Google Scholar 

  • Soussi T, Caron de Fromentel C, May P (1990) Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5:945–952

    PubMed  Google Scholar 

  • Valverde P, Healy E, Jackson I, Rees JL, Thody AJ (1995) Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 11:328–330

    PubMed  Google Scholar 

  • Vogelstein B (1990) A deadly inheritance. Nature 348:681–682

    Google Scholar 

  • Vogelstein B, Kinzler KW (1992) p53 function and dysfunction. Cell 70:523–526

    PubMed  Google Scholar 

  • Volkenandt M, Schlegel U, Nanus DM, Albino AP (1991) Mutational analysis of the p53 gene in malignant melanoma. Pigment Cell Res 4:35–40

    PubMed  Google Scholar 

  • Weiss J, Schwechheimer K, Cavenee WK, Herlyn M, Arden KC (1993) Mutation and expression of the p53 gene in malignant melanoma cell lines. Int J Cancer 54:693–699

    PubMed  Google Scholar 

  • Yamamoto F, Nishimura S, Kasai H (1992) Photosensitized formation of 8-hydroxydeoxyguanosine in cellular DNA by riboflavin. Biochem. Biophys Res Commun 187:809–813

    PubMed  Google Scholar 

  • Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–978

    PubMed  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leucaemic cells that is inhibited by interleukin-6. Nature 352:345–347

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by grant EV5V-CT92-0096

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papp, T., Jafari, M. & Schiffmann, D. Lack ofp53 mutations and loss of heterozygosity in non-cultured human melanocytic lesions. J Cancer Res Clin Oncol 122, 541–548 (1996). https://doi.org/10.1007/BF01213550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213550

Key words

Navigation