Skip to main content
Log in

Satellited Y chromosomes: Structure, origin, and clinical significance

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Three cases of inherited satellited Y chromosomes (Yqs) were analysed using several cytogenetic techniques. The cytogenetic data of the 14 cases of Yqs chromosomes described to date were reviewed. All Yqs chromosomes carry an active nucleolus organizer region (NOR) in their long arm and must have developed from translocations involving the short arms of the acrocentric autosomes. The structure of the heterochromatic satellite region in the Yqs chromosomes shows conspicuous inter-familial differences; this permits the reconstruction of the translocations from which the various Yqs were derived. Some causal factors leading to the development of Yqs chromosomes are considered: the specific localization of the four satellite DNAs and highly methylated DNA sequences in the karyotype, and some new experimental data on the spatial arrangement of heterochromatic regions in interphase nuclei. These provide distinct evidence for a preferential involvement of the autosomes 15 and 22 in the translocations with the Y heterochromatin. All clinical reports documenting Yqs males born with malformations were reviewed. It appears that the presence of an extra NOR and NOR-associated heterochromatin in the Yqs chromosomes does not cause any phenotypic abnormalities (as long as the Y euchromatin is intact). The possibility that a Yqs chromosome predisposes to non-disjunction and/or to translocations of other chromosomes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bayless-Underwood L, Cho S, Ward B, Robinson A (1983) Two cases of prenatal diagnosis of a satellited Yq chromosome. Clin Genet 24:359–364

    Google Scholar 

  • Bordson B, Varela M (1982) Yqs in an American family of Scottish descent. Hum Genet 60:387–388

    Google Scholar 

  • Bühler EM (1980) A synopsis of the human Y chromosome. Hum Genet 55:145–175

    Google Scholar 

  • Busch H, Lischwe MA, Michalik J, Chan P-K, Busch RK (1982) Nucleolar proteins of special interest: silver-staining proteins B23 and C23 and antigens of human tumour nucleoli. In: Jordan EG, Cullis CA (eds) The nucleolus. Cambridge University Press, Cambridge, pp 43–71

    Google Scholar 

  • Buys CHCM, Osinga J (1980) Abundance of protein-bound sulf-hydril and disulfide groups at chromosomal nucleolus organizing regions—a cytochemical study on the selective silver staining of NORs. Chromosoma 77:1–11

    Google Scholar 

  • Caspersson T, Zech L, Johannsson C, Modest EJ (1970) Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30:215–227

    Google Scholar 

  • Cohen MM, Frederick RW, Balkin NE, Simpson SJ (1981) The identification of Y chromosome translocations following distamycin A treatment. Clin Genet 19:335–342

    Google Scholar 

  • Cooke HJ, Noel B (1979) Confirmation of Y/autosome translocations using recombinant DNA. Hum Genet 50:39–44

    Google Scholar 

  • Couturier J, Dutrillaux B, Lejeune J (1973) Etude des fluorescences spécifique des bandes R et des bandes Q des chromosomes humains. CR Seances Acad Sci [III] 276:339–342

    Google Scholar 

  • Davis RM (1981) Localisation of male-determining factors in man: a thorough review of structural anomalies of the Y chromosome. J Med Genet 18:161–195

    Google Scholar 

  • Engel W, Zenzes MT, Schmid M (1977) Activation of mouse ribosomal RNA genes at the 2-cell stage. Hum Genet 38:57–63

    Google Scholar 

  • Evans HJ, Buckland RA, Pardue ML (1974) Location of the genes coding for 18S and 28S ribosomal RNA in the human genome. Chromosoma 48:405–426

    Google Scholar 

  • Funderburk SJ, Klisak I, Sparkes RS, Carrel RE (1982) Familial Y-autosome translocation in two unrelated girls. Ann Génét (Paris) 25:119–122

    Google Scholar 

  • Genest P (1972) An eleven-generation satellited Y chromosome Lancet I:1073

    Google Scholar 

  • Genest P (1973) Transmission héréditaire, depui 300 ans, d'un chromosome Y a satellites dans une lignée familiale. Ann Génét (Paris) 16:35–38

    Google Scholar 

  • Genest P (1978) Propos sur un chromosome Y a satellites. Ann Génét (Paris) 21:237–238

    Google Scholar 

  • Genest P, Bouchard M, Bouchard J (1967) A satellited human Y chromosome. Lancet I:1279–1280

    Google Scholar 

  • Genest P, Genest FB, Gagnon-Blais D (1983) Un remaniement chromosomique inhabituel. Une translocation télomerique autosomique sur un Y à satellites (Yqs) multicentenaire. Ann Génét (Paris) 26:86–90

    Google Scholar 

  • Giraldo A, Martínez I, Guzmán M, Silva E (1981) A family with a satellited Yq chromosome. Hum Genet 57:99–100

    Google Scholar 

  • Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53:37–50

    Google Scholar 

  • Goodpasture C, Bloom SE, Hsu TC, Arrighi FE (1976) Human nucleolus organizers: the satellites or the stalks? Am J Hum Genet 28:559–566

    Google Scholar 

  • Gosden JR, Mitchell AR, Buckland RA, Clayton RP, Evans HJ (1975) The location of four human satellite DNAs on human chromosomes. Exp Cell Res 92:148–158

    Google Scholar 

  • Hayata I, Oshimura M, Kakati S, Sandberg AA (1975) Deletion of Y-heterochromatin and origin of brightly fluorescing satellites. Mam Chrom Newsletter 16:78

    Google Scholar 

  • Hayata I, Oshimura M, Sandberg AA (1977) N-band polymorphism of human acrocentric chromosomes and its relevance to satellite association. Hum Genet 36:55–61

    Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1973) Ribosomal DNA connectives between human acrocentric chromosomes. Nature 245:95–97

    Google Scholar 

  • Howard-Peebles PN, Stoddard GR (1976) A satellited Yq chromosome associated with trisomy 21 and an inversion of chromosome 9. Hum Genet 34:223–225

    Google Scholar 

  • Howell WM, Howard-Peebles PN, Block BM, Stoddard GR (1978) Silver stain reveals nucleolus organizer regions on a satellited Yq chromosome. Hum Genet 42:245–250

    Google Scholar 

  • Jotterand-Bellomo M (1983) Les effets de la distamycine A sur les cellules du liquide amniotique cultivées in vitro. Ann Génét (Paris) 26:27–30

    Google Scholar 

  • Kinross J, Fraccaro M, Scappaticci S, Tiepolo L, Zuffardi O, Pawlowitzki IA, Jones KW (1978) Bsu restriction of DNA from cases exhibiting sex-chromosome abnormalities. Cytogenet Cell Genet 20:59–69

    Google Scholar 

  • Martin RH (1983) A detailed method for obtaining preparations of human sperm chromosomes. Cytogenet Cell Genet 35:252–256

    Google Scholar 

  • Martín Lucas MA, Pérez Castillo A, Abrisqueta JA (1983) Satellited Yq chromosome. A familial study. Clin Genet 23:237

    Google Scholar 

  • Merry DE, Pathak S, VandeBerg JL (1983) Differential NOR activities in somatic and germ cells of Monodelphis domestica (Marsupiala, Mammalia). Cytogenet Cell Genet 35:244–251

    Google Scholar 

  • McKenzie WH, Lubs HA (1975) Human Q and C chromosomal variations: distributions and incidence. Cytogenet Cell Genet 14:97–115

    Google Scholar 

  • Mikelsaar A-V, Schmid M, Krone W, Schwarzacher HG, Schnedl W (1977) Frequency of Ag-stained nucleolus organizer regions in the acrocentric chromosomes of man. Hum Genet 37:73–77

    Google Scholar 

  • Miklos GLG, John B (1979) Heterochromatin and satellite DNA in man: properties and prospects. Am J Hum Genet 31:264–280

    Google Scholar 

  • Miller OJ, Schnedl W, Allen J, Erlanger BF (1974) 5-Methylcytosine localised in mammalian constitutive heterochromatin. Nature 251:636–637

    Google Scholar 

  • Miller DA, Dev VG, Tantravahi R, Miller OJ (1976a) Suppression of human nucleolus organizer activity in mouse-human somatic hybrid cells. Exp Cell Res 101:235–243

    Google Scholar 

  • Miller OJ, Miller DA, Dev VG, Tantravahi R, Croce CM (1976b) Expression of human and suppression of mouse nucleolus organizer activity in mouse-human somatic cell hybrids. Proc Natl Acad Sci USA 73:4531–4535

    Google Scholar 

  • Overton KM, Magenis RE, Brady T, Chamberlin J, Parks M (1976) Cytogenetic darkroom magic: now you see them, now you don't. Am J Hum Genet 28:417–419

    Google Scholar 

  • Pfeiffer RA (1974) Cell cultures from blood and bone marrow. In: Schwarzacher HG, Wolf U (eds) Methods in human cytogenetics. Springer, Berlin Heidelberg New York, pp 1–37

    Google Scholar 

  • Prantera G, Pimpinelli S, Rocchi A (1979) Effects of distamycin A on human leukocytes in vitro. Cytogenet Cell Genet 23:103–107

    Google Scholar 

  • Rudak E, Jacobs PA, Yanagimachi R (1978) Direct analysis of the chromosome constitution of human spermatozoa. Nature 274: 911–913

    Google Scholar 

  • Schempp W, Meer B (1983) Cytologic evidence for three human X-chromosomal segments escaping inactivation. Hum Genet 63: 171–174

    Google Scholar 

  • Schempp W, Müller U (1982) High resolution replication patterns of the human Y chromosome. Intra- and interindividual variation. Chromosoma 86:229–237

    Google Scholar 

  • Schmid M (1979) Demonstration of Y/autosomal translocations using distamycin A. Hum Genet 53:107–109

    Google Scholar 

  • Schmid M, Krone W, Vogel W (1974) On the relationship between the frequency of association and the nucleolar constriction of individual acrocentric chromosomes. Hum Genet 23:267–277

    Google Scholar 

  • Schmid M, Löser C, Schmidtke J, Engel W (1982) Evolutionary conservation of a common pattern of activity of nucleolus organizers during spermatogenesis in vertebrates. Chromosoma 86:149–179

    Google Scholar 

  • Schmid M, Grunert D, Haaf T, Engel W (1983a) A direct demonstration of somatically paired heterochromatin of human chromosomes. Cytogenet Cell Genet 36:554–561

    Google Scholar 

  • Schmid M, Schmidtke J, Kruse K, Tolksdorf M (1983b) Characterization of a Y/15 translocation by banding methods, distamycin A treatment of lymphocytes and DNA restriction endonuclease analysis. Clin Genet 24:234–239

    Google Scholar 

  • Schmid W (1967) Heterochromatin in mammals. Arch Julius Klaus-Stift Vererbungsforsch Sozialanthropol Rassenhyg 42:1–60

    Google Scholar 

  • Schmid W (1969) Satellites on the long Y chromosome arm: a familial Y/autosome translocation in man. Cytogenet Cell Genet 8: 415–426

    Google Scholar 

  • Schnedl W (1978) Structure and variability of human chromosomes analysed by recent techniques. Hum Genet 41:1–9

    Google Scholar 

  • Schnedl W, Dev VG, Tantravahi R, Miller DA, Erlanger BF, Miller OJ (1975) 5-Methylcytosine in heterochromatic regions of chromosomes: chimpanzee and gorilla compared to the human. Chromosoma 52:59–66

    Google Scholar 

  • Schweizer D, Ambros P, Andrle M (1978) Modification of DAPI banding on human chromosomes by prestaining with a DNA binding oligopeptide antibiotic, distamycin A. Exp Cell Res 111:327–332

    Google Scholar 

  • Shabtai F, Eilam N, Elian E, Halbrecht I (1981) A new family with a satellited Y. Ann Génét (Paris) 24:223–225

    Google Scholar 

  • Smith A, Fraser IS, Elliot G (1979) An infantile male with balanced Y;19 translocation: review of Y;autosome translocations. Ann Génét (Paris) 22:189–194

    Google Scholar 

  • Stella M, Rossi R, Bonfante A, Rossi G (1980) A new case of human Y chromosome with satellites on the long arm. J Génét Hum 28:39–45

    Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Google Scholar 

  • Turleau C, Chavin-Colin F, Seger J, Sorin M, Salet D, de Grouchy J (1978) Chromosome Y avec satellite (Yqs) et organisateur nucléolaire survenu de novo. Ann Génét (Paris) 21:239–242

    Google Scholar 

  • Viegas-Péquignot E, Dutrillaux B (1976) Segmentation of human chromosomes induced by 5-ACR (5-azacytidine). Hum Genet 34:247–254

    Google Scholar 

  • Warburton D, Atwood KC, Henderson AS (1976) Variation in the number of genes for rRNA among human acrocentric chromosomes: correlation with frequency of satellite associations. Cytogenet Cell Genet 17:221–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Haaf, T., Solleder, E. et al. Satellited Y chromosomes: Structure, origin, and clinical significance. Hum Genet 67, 72–85 (1984). https://doi.org/10.1007/BF00270562

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00270562

Keywords

Navigation