Skip to main content
Log in

Assignment of congenital cataract Volkmann type (CCV) to chromosome 1p36

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Congenital cataract, type Volkmann (McKusick no 115665, gene symbol CCV) is an autosomal dominant eye disease. The disease is characterized by a progressive, central and zonular cataract, with opacities both in the embryonic, fetal and juvenile nucleus and around the anterior and posterior Y-suture. We examined blood samples from 91 members of a Danish pedigree comprising 426 members, by using highly informative short tandem repeat polymorphisms and found the closest linkage of the disease gene (CCV) to a (CA) n dinucleotide repeat polymorphism at locus D1S243 (Zmax = 14.04 at θ M = 0.025 θ F = 0.000), at a penetrance of 0.90. Using two additional chromosome 1 markers, we were able to map the CCV gene in the sequence 1pter-(CCV, D1S243)-D1S468-D1S214. The (enolase 1) gene has been mapped to this area; however, a mutation described in this gene did not give eye disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bodker FS, Lavery MA, Mitchell TN, Lovrien EW, Maumenee IH (1990) Microphthalmos in the presumed homozygous offspring of a first cousin marriage and linkage analysis of a locus in a family with autosomal dominant Cerulean congenital cataracts. Am J Med Genet 37:54–59

    Google Scholar 

  • Carper D, Shinohara T, Piatigorsky J, Kinoshita JH (1982) Deficiency of functional messenger RNA for a developmentally regulated beta-crystallin polypeptide in a hereditary cataract. Science 217:463–464

    Google Scholar 

  • Carritt B, King J, Welch HM (1982) Gene order and localization of enzyme loci on the short arm of chromosome 1. Ann Hum Genet 46:329–335

    Google Scholar 

  • Conneally PM, Wilson AF, Merrit AD, Helveston EM, Palmer CG, Wang LY (1978) Confirmation of genetic heterogeneity in autosomal dominant forms of congenital cataracts from linkage studies. Cytogenet Cell Genet 22:295–297

    Google Scholar 

  • D'Ancoma GG, Chern CJ, Benn P, Croce CM (1977) Assignment of the human gene for enolase 1 to region pter→p36 of chromosome 1. Cytogenet Cell Genet 18:327–332

    Google Scholar 

  • Eiberg H, Marner E, Rosenberg T, Mohr J (1988) Marner's cataract (CAM) assigned to chromosome 16: linkage to haptoglobin. Clin Genet 34:272–275

    Google Scholar 

  • Eiberg H, Nielsen LS, Klausen J, Dalén M, Kristensen M, Bisgaard ML, Møller N, Mohr J (1989) Linkage between serum cholinesterase 2 (CHE2) and γ-crystallin gene cluster (CRYG): assignment to chromosome 2. Clin Genet 35:313–321

    Google Scholar 

  • Eiberg H, Marner E, Rosenberg T, Mohr J (1991) RFLP typing of a family with Marner's cataract. Clin Genet 40:102

    Google Scholar 

  • Garber AT, Winkler C, Shimohara T, King CR, Inana G, Piatigorsky J, Gold RJ (1985) Selective loss of a family of gene transcript in a hereditary murine cataract. Science 227:74–77

    Google Scholar 

  • Giallongo A, Feo S, Moore M, Croce CM, Showe LC (1986) Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Proc Natl Acad Sci 83:6741–6745

    Google Scholar 

  • Giallongo A, Oliva D, Cali L, Barba G, Barbieri G, Feo S (1990) Structure of the human gene for α-enolase. Eur J Biochem 190:567–573

    Google Scholar 

  • Gitzelmann R (1967) Hereditary galactokinase deficiency, a newly recognized cause of juvenile cataracts. Pediatr Res 1:14–23

    Google Scholar 

  • Gyapay G, Morissette J, Vignal A, Dip C, Fizames C, Millasseaun P, Marc S, Bernardi G, Lathrop M, Weissenbach J (1994) The 1993–1994 Généthon human genetic linkage map. Nature Genet 7:246–339

    Google Scholar 

  • Harley JD, Irvine S, Mutton P, Gupta JD (1971) Maternal enzymes of galactose metabolism and the ‘inexplicable’ infantile cataract. Lancet II:259–261

    Google Scholar 

  • Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North-Holland, Amsterdam Oxford

    Google Scholar 

  • Hinks LJ, Day INM (1991) Further studies of endolase loci. Cytogen Cell Genet 58:1854

    CAS  PubMed  Google Scholar 

  • Huang Q, Du X, Stone SH, Amsbaugh DF, Datiles M, Hu T, Zigler JS (1990) Association of hereditary cataracts in strain 13/N guinea-pigs with mutation of the gene for zeta-crystallin. Exp Eye Res 50:317–325

    Google Scholar 

  • Jensen S, Goldschmidt E (1971) Genetic counseling in sporadic cases of congenital cataract. Acta Ophthalmol 49:572–576

    Google Scholar 

  • Lachant NA, Jennings MA, Tanaka KR (1986) Partial erythrocyte enolase deficiency: a hereditary disorder with variable clinical expression. Blood 68:55a

    Google Scholar 

  • Lathrop GM, Lalouel JM (1984) Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet 36:460–465

    Google Scholar 

  • Lubsen NH, Renwick, JH, Schoenmakers JGG (1986) Hereditary cataract: perspective for prenatal screening. Ophthalmic Paediatr Genet 7:195–200

    Google Scholar 

  • Lund AM, Eiberg H, Rosenberg T, Warburg M (1992) Autosomal dominant congenital cataract; linkage relations; clinical and genetic heterogeneity. Clin Genet 41:65–69

    Google Scholar 

  • McKusick VA (1992) Mendelian inheritance in man, 10th edn. The Johns Hopkins University Press, Baltimore London, p 806

    Google Scholar 

  • Moross T, Vaithilingam SS, Styles S, Gardner HA (1984) Autosomal dominant anterior polar cataracts associated with a familial 2;14 translocation. J Med Genet 21:52–53

    Google Scholar 

  • Reese PD, Truck-Muller CM, Maumenee IH (1987) Autosomal dominant congenital cataract associated with chromosomal translocation [t (3;4) (p26.2;p15)]. Arch Ophthalmol 105:1382–1384

    Google Scholar 

  • Renwick JH, Lawler SD (1963) Probable linkage between a congenital cataract locus and the Duffy blood group locus. Ann Hum Genet 27:67–84

    Google Scholar 

  • Simonelli F, Cotticelli L, Russo SD, Meo A, Rinaldi E (1987) Galactose-1-P-uridyl transferase activity in patients with congenital and infantile cataract. Ophthalmic Paediatr Genet 8:187–190

    Google Scholar 

  • Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Millasseau P, Vaysseix G, Lathrop M (1992) A second-generation linkage map of the human genome. Nature 359:794–801

    Google Scholar 

  • Wistow GJ, Lietman T, Williams LA, Stapel SO, DeJong WW, Horwitz J, Piatigorsky J (1988) Tau-chrystallin/alpha-enolase: one gene encodes both an enzyme and a lens structural protein. J Cell Biol 107:2729–2736

    Google Scholar 

  • Yokoyama Y, Narahara K, Tsuji K, Ninomiya S, Seino Y (1992) Autosomal dominant congenital cataract and microphthaimia associated with a familial t(2;16) translocation. Hum Genet 90:177–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eiberg, H., Lund, A.M., Warburg, M. et al. Assignment of congenital cataract Volkmann type (CCV) to chromosome 1p36. Hum Genet 96, 33–38 (1995). https://doi.org/10.1007/BF00214183

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214183

Keywords

Navigation