Skip to main content

The Many Clinical Faces of Cytochrome c Oxidase Deficiency

  • Chapter
  • First Online:
Book cover Mitochondrial Oxidative Phosphorylation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 748))

Abstract

Cytochrome c oxidase (COX) catalyzes the last step in respiration, transferring electrons from cytochrome c to molecular oxygen and coupling electron transfer with proton translocation from the mitochondrial matrix to the intermembrane space. COX is composed of 13 subunits, three larger catalytic subunits encoded by mitochondrial DNA (mtDNA) and ten subunits encoded by nuclear DNA. Clinically heterogeneous human diseases were attributed to COX deficiency since the 1970s, mostly based on histochemical or biochemical data in muscle biopsies. Here, we revisit the COX deficiencies described before the molecular era, assess the value of COX histochemistry in conjunction with succinate dehydrogenase (SDH) stain, and review the clinical presentations of primary COX deficiencies defined at the molecular level. In general, mutations in mtDNA COX genes are associated with milder and later onset clinical syndromes, probably due to heteroplasmy. Mutations affecting nuclear-encoded COX subunits (“direct hits”) are extremely rare whereas mutations affecting assembly proteins (“indirect hits”) account for most COX deficiencies and the list keeps growing. Onset is generally in infancy and survival into adolescence or adult life is infrequent. The most common neurological disorder is Leigh syndrome, either alone or associated with cardiopathy, hepatopathy, or nephropathy.

This chapter is dedicated to the memory of Eduardo Bonilla (1936–2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreu AL, Hanna MG, Reichmann H et al (1999) Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 341:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Antonicka H, Leary SC, Guercin G-H et al (2003a) Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Mol Genet 12:2693–2702

    Article  PubMed  CAS  Google Scholar 

  • Antonicka H, Mattman A, Carlson CG et al (2003b) Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet 72:101–114

    Article  PubMed  CAS  Google Scholar 

  • Bardosi A, Creutzfeldt W, DiMauro S et al (1987) Myo-, neuro-, gastrointestinal encephalopathy (MNGIE syndrome) due to partial deficiency of cytochrome-c-oxidase. A new mitochondrial multisystem disorder. Acta Neuropathol 74:248–258

    Article  PubMed  CAS  Google Scholar 

  • Betts J, Jaros E, Perry RH et al (2006) Molecular neuropathology of MELAS: level of heteroplasmy in individual neurones and evidence of extensive vascular involvement. Neuropathol Appl Neurobiol 32:359–373

    Article  PubMed  CAS  Google Scholar 

  • Betts J, Barron MJ, Schaefer AM, Taylor RW, Turnbull D (2008) Gastrointestinal tract involvement associated with the 3243A>G mitochondrial DNA mutation. Neurology 70:1290–1292

    Article  PubMed  CAS  Google Scholar 

  • Bohm M, Pronicka E, Karczmarewicz E et al (2006) Retrospective, multicentric study of 180 children with cytochrome c oxidase deficiency. Pediatr Res 59:21–26

    Article  PubMed  Google Scholar 

  • Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM (1999) Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 46:787–790

    Article  PubMed  CAS  Google Scholar 

  • Bortwick GM, Taylor RW, Walls TJ et al (2006) Motor neuron disease in a patient with a mitochondrial tRNAIle mutation. Ann Neurol 59:570–574

    Article  Google Scholar 

  • Boustany RN, Aprille JR, Halperin J, Levy H, DeLong GR (1983) Mitochondrial cytochrome deficiency presenting as a myopathy with hypotonia, external ophthalmoplegia, and lactic acidosis in an infant and as fatal hepatopathy in a second cousin. Ann Neurol 14:462–470

    Article  PubMed  CAS  Google Scholar 

  • Bresolin N, Zeviani M, Bonilla E et al (1985) Fatal infantile cytochrome c oxidase deficiency: decrease of immunologically detectable enzyme in muscle. Neurology 35:802–812

    Article  PubMed  CAS  Google Scholar 

  • Brosel S, Yang H, Tanji K, Bonilla E, Schon EA (2010) Unexpected vascular enrichment of SCO1 over SCO2 in mammsalian tissues. Am J Pathol 177:2541–2548

    Article  PubMed  CAS  Google Scholar 

  • Bugiani M, Tiranti V, Farina L, Uziel G, Zeviani M (2005) Novel mutations in COX15 in a long surviving Leigh syndrome patient with cytochrome c oxidase deficiency. J Med Genet 42:e28

    Article  PubMed  CAS  Google Scholar 

  • Chrzanowska-Lightowlers ZMA, Horvath R, Lightowlers RN (2011) 175th ENMCinternational workshop: Mitochondrial protein synthesis in health and disease, 25-27th June, 2010, Naarden, The Netherlands. Neuromuscul Disord 21:142–147

    Article  PubMed  CAS  Google Scholar 

  • Coenen MJH, Smeitink JAM, Pots JM et al (2006) Sequence analysis of the structural nuclear encoded subunits and assembly genes of cytochrome c oxidase in a cohort of 10 isolated complex IV-deficient patients revealed five mutations. J Child Neurol 21:508–511

    PubMed  Google Scholar 

  • Comi GP, Bordoni A, Salani S et al (1998) Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 43:110–116

    Article  PubMed  CAS  Google Scholar 

  • Davidzon G, Mancuso M, Ferraris S et al (2005) POLG mutations and Alpers syndrome. Ann Neurol 57:921–924

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S, Mendell JR, Sahenk Z et al (1980) Fatal infantile mitochondrial myopathy and renal dysfunction due to cytochrome-c-oxidase deficiency. Neurology 30:795–804

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S, Nicholson JF, Hays AP et al (1983) Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Ann Neurol 14:226–234

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S, Zeviani M, Servidei S et al (1986) Cytochrome oxidase deficiency: clinical and biochemical heterogeneity. Ann N Y Acad Sci 488:19–32

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S, Servidei S, Zeviani M et al (1987) Cytochrome c oxidase deficiency in Leigh syndrome. Ann Neurol 22:498–506

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S, Lombes A, Nakase H et al (1990) Cytochrome c oxidase deficiency. Pediatr Res 28:536–541

    Article  PubMed  CAS  Google Scholar 

  • Fontanesi F, Soto IC, Horn D, Barrientos A (2006) Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Cell Physiol 291:C1129–C1147

    Article  CAS  Google Scholar 

  • Fontanesi F, Soto IC, Barrientos A (2008) Cytochrome c oxidase biogenesis: New levels of regulation. IUBMB Life 60:557–568

    Article  PubMed  CAS  Google Scholar 

  • Freisinger P, Horvath R, Macmillan C, Peters J, Jaksch M (2004) Reversion of hypertrophic cardiomyopathy in a patient with deficiency of the mitochondrial copper binding protein Sco2: Is there a potential effect of copper? J Inherit Metab Dis 27:67–79

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi D, Saada A, D’Adamo P et al (2008) FASTK2 nonsense mutation in an infantile mitochondrial encephalomyopathy associated with cytochrome c oxidase deficiency. Am J Hum Genet 83:415–423

    Article  PubMed  CAS  Google Scholar 

  • Greaves LC, Preston SL, Tadrous PJ et al (2006) Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by cryptic fission. Proc Natl Acad Sci USA 103:714–719

    Article  PubMed  CAS  Google Scholar 

  • Heiman Patterson TD, Bonilla E, DiMauro S, Foreman J, Schotland DL (1982) Cytochrome-c-oxidase deficiency in a floppy infant. Neurology 32:898–901

    Article  PubMed  CAS  Google Scholar 

  • Hirano M, Lagier-Tourenne C, Valentino ML, Marti R, Nishigaki Y (2005) Thymidine phosphorylase mutations cause instability of mitochondrial DNA. Gene 354:152–156

    Article  PubMed  CAS  Google Scholar 

  • Horvath R, Lochmuller H, Stucka R et al (2000) Characterization of human SCO1 and COX17 genes in mitochondrial cytochrome-c-oxidase deficiency. Biochem Biophys Res Comm 276:530–532

    Article  PubMed  CAS  Google Scholar 

  • Horvath R, Kemp JP, Tuppen HAL et al (2009) Molecular basis of infantile reversible cytochrome c oxidase deficiency. Brain 132:3165–3174

    Article  PubMed  Google Scholar 

  • Huigsloot M, Nijtmans LGJ, Szklarczyk R et al (2011) A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy. Am J Hum Genet 88:488–493

    Article  PubMed  CAS  Google Scholar 

  • Huttemann M, Schmidt TR, Grossman L (2003) A third form of cytochrome c oxidase subunit VIII is present in mammals. Gene 312:95–102

    Article  PubMed  CAS  Google Scholar 

  • Jaksch M, Ogilvie I, Yao J et al (2000) Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency. Hum Mol Genet 9:795–801

    Article  PubMed  CAS  Google Scholar 

  • Jaksch M, Horvath R, Horn N et al (2001a) Homozygosity (E140K) in SCO2 causes delayed infantile onset of cardiomyopathy and neuropathy. Neurology 57:1440–1446

    Article  PubMed  CAS  Google Scholar 

  • Jaksch M, Paret C, Stucka R et al (2001b) Cytochrome c oxidase deficiency due to mutations in SCO2, encoding a mitochondrial copper-binding protein, is rescued by copper in human myoblasts. Hum Mol Genet 10:3025–3035

    Article  PubMed  CAS  Google Scholar 

  • Karadimas CL, Greenstein P, Sue CM et al (2000) Recurrent myoglobinuria due to a nonsense mutation in the COX I gene of mtDNA. Neurology 55:644–649

    Article  PubMed  CAS  Google Scholar 

  • Kennaway NG, Carrero-Valenzuela RD, Ewart G et al (1990) Isoforms of mammalian cytochrome c oxidase: correlation with human cytochrome c oxidase deficiency. Pediatr Res 28:529–535

    Article  PubMed  CAS  Google Scholar 

  • Knuf M, Faber J, Huth RG, Freisinger P, Zepp F, Kampmann C (2007) Identification of a novel compound heterozygote SCO2 mutation cytochrome c oxidase deficient fatal infantile cardioencephalomyopathy. Acta Paediatr 96:128–134

    Article  Google Scholar 

  • Kollberg G, Moslemi A-R, Lindberg C, Holme E, Oldfors A (2005) Mitochondrial myopathy and rhabdomyolysis associated with a novel nonsense mutation in the gene encoding cytochrome c oxidase subunit I. J Neuropathol Exp Neurol 64:123–128

    PubMed  CAS  Google Scholar 

  • Leary SC, Mattman A, Wai T et al (2006) A hemizygous SCO2 mutation in an early onset rapidly progressive, fatal cardiomyopathy. Mol Genet Metab 89:129–133

    Article  PubMed  CAS  Google Scholar 

  • Manfredi G, Schon EA, Moraes CT et al (1995) A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromuscul Disord 5:391–398

    Article  PubMed  CAS  Google Scholar 

  • Massa V, Fernandez-Vizarra E, Alshahwan S et al (2008) Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Genet 82:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • McFarland R, Taylor RW, Chinnery PF, Howell N, Turnbull DM (2004) A novel sporadic mutation in cytochrome c oxidase subunit II as a cause of rhabdomyolysis. Neuromuscul Disord 14:162–166

    Article  PubMed  Google Scholar 

  • Menkes JH (2008) Disorders of copper metabolism: Wilson disease and Menkes disease. In: Rosenberg RN, DiMauro S, Paulson HL, Ptacek L, Nestler EJ (eds) The molecular and genetic basis of neurologic and psychiatric disease, 4th edn. Kluwer, Philadelphia, pp 721–726

    Google Scholar 

  • Mimaki M, Hatakayama H, Komaki H et al (2010) Reversible infantile respiratory chain deficiency: A clinical and molecular study. Ann Neurol 68:845–854

    Article  PubMed  CAS  Google Scholar 

  • Minchom PE, Dormer RL, Hughes IA et al (1983) Fatal infantile mitochondrial myopathy due to cytochrome c oxidase deficiency. J Neurol Sci 60:453–463

    Article  PubMed  CAS  Google Scholar 

  • Mkaouar-Rebai E, Ellouze E, Chamkha I, Kammoun F, Triki C, Fakhfakh F (2011) Molecular-clinical correlation in a large family with a novel heteroplasmic Leigh syndrome missense mutation in the mitochondrial cytochrome c oxidase III gene. J Child Neurol 26:12–20

    Google Scholar 

  • Mootha VK, Lepage P, Miller K et al (2003) Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci USA 100:605–610

    Article  PubMed  CAS  Google Scholar 

  • Moraes CT, Shanske S, Tritschler HJ et al (1991) MtDNA depletion with variable tissue expression: A novel genetic abnormality in mitochondrial diseases. Am J Hum Genet 48:492–501

    PubMed  CAS  Google Scholar 

  • Morin C, Mitchell G, Larochelle J et al (1993) Clinical, metabolic, and genetic aspects of cytochrome c oxidase deficiency in Saguenay-Lac-Saint-Jean. Am J Hum Genet 53:488–496

    PubMed  CAS  Google Scholar 

  • Oquendo CE, Antonicka H, Shoubridge EA, Reardon W, Brown GK (2004) Functional and genetic studies demonstrate that mutation in the COX15 gene can cause Leigh syndrome. J Med Genet 41:540–544

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou LC, Sue CM, Davidson MM et al (1999) Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23:333–337

    Article  PubMed  CAS  Google Scholar 

  • Pequignot MO, Dey R, Zeviani M et al (2001) Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome c oxidase deficiency. Hum Mutat 17:374–381

    Article  PubMed  CAS  Google Scholar 

  • Pronicki M, Kowalski P, Piekutowska-Abramczuk D et al (2010) A homozygous mutation in the SCO2 gene causes a spinal muscular atrophy like presentation with stridor and respiratory insufficiency. Eur J Paediatr Neurol 14:253–260

    Article  PubMed  Google Scholar 

  • Rossmanith W, Freilinger M, Roka J et al (2008) Isolated cytochrome c oxidase deficiency as a cause of MELAS. J Med Genet 45:117–121

    Article  PubMed  CAS  Google Scholar 

  • Sacconi S, Salviati L, Sue CM et al (2003) Mutation screening in patients with isolated ­cytochrome c oxidase deficiency. Pediatr Res 53:224–230

    Article  PubMed  CAS  Google Scholar 

  • Salviati L, Sacconi S, Raslan MM et al (2001) A novel SCO2 mutation mimicking Werdig-Hoffman disease. Mitochondrion 1(Suppl 1):S82

    Google Scholar 

  • Salviati L, Hernandez-Rosa E, Walker WF, Sacconi S, DiMauro S, Davidson MM (2002) Copper supplementation restores cytochrome c oxidase activity in cultured cells from patients with SCO2 mutations. Biochem J 363:321–327

    Article  PubMed  CAS  Google Scholar 

  • Schara U, von Kleist-Retzow J-C, Lainka E et al (2011) Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations. J Inherit Metab Dis 34:197–201

    Article  PubMed  Google Scholar 

  • Seeger J, Schrank B, Pyle A et al (2010) Clinical and neuropathological findings in patients with TACO1 mutations. Neuromuscul Disord 20:720–724

    Article  PubMed  Google Scholar 

  • Servidei S, Lazaro RP, Bonilla E, Barron KD, Zeviani M, DiMauro S (1987) Mitochondrial encephalomyopathy and partial cytochrome c oxidase deficiency. Neurology 37:58–63

    Article  PubMed  CAS  Google Scholar 

  • Sue CM, Karadimas C, Checcarelli N et al (2000) Differential features of patients with mutations in two COX assembly genes, SURF-1 and SCO2. Ann Neurol 47:589–595

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Bourgeois JM, Fu M-H et al (2004) Novel SCO2 mutation (G1521A) presenting as a spinal muscular atrophy type I phenotype. Am J Med Genet 125A:310–314

    Article  PubMed  Google Scholar 

  • Tay SKH, Shanske S, Kaplan P, DiMauro S (2004) Association of mutations in SCO2, a ­cytochrome c oxidase assembly gene, with early fetal lethality. Arch Neurol 61:950–952

    Article  PubMed  Google Scholar 

  • Tiranti V, Hoertnagel K, Carrozzo R et al (1998) Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 63:1609–1621

    Article  PubMed  CAS  Google Scholar 

  • Tiranti V, Visconti C, Hildebrandt T et al (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 15:200–205

    Article  PubMed  CAS  Google Scholar 

  • Uusimaa J, Finnila S, Vainionpaa L et al (2003) A mutation in mitochondrial DNA-encoded ­cytochrome c oxidase II gene in a child with Alpers-Huttenlocher-like disease. Pediatrics 111:e262–e268

    Article  PubMed  Google Scholar 

  • Uusimaa J, Jungbluth H, Fratter C et al (2011) Reversible infantile respiratory chain deficiency is a unique, genetically heterogeneous mitochondrial disease. J Med Genet 48:660–668

    Article  PubMed  CAS  Google Scholar 

  • Valnot I, Osmond S, Gigarel N et al (2000a) Mutations of the SCO1 gene in mitochondrial ­cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 67:1104–1109

    PubMed  CAS  Google Scholar 

  • Valnot I, von Kleist-Retzow J-C, Barrientos A et al (2000b) A mutation in the human heme-A:farnesyltransferase gene (COX 10) causes cytochrome c oxidase deficiency. Hum Mol Genet 9:1245–1249

    Article  PubMed  CAS  Google Scholar 

  • Van Biervliet JPM, Bruinvis L, Ketting D et al (1977) Hereditary mitochondrial myopathy with lactic acidemia, a DeToni-Fanconi-Debré syndrome, and a defective respiratory chain in ­voluntary striated muscles. Pediatr Res 11:1088–1093

    Article  PubMed  Google Scholar 

  • Van Coster R, Lombes A, DeVivo DC et al (1991) Cytochrome c oxidase-associated Leigh ­syndrome: phenotypic features and pathogenetic speculations. J Neurol Sci 104:97–111

    Article  PubMed  Google Scholar 

  • Vesela K, Hulkova H, Hansikova H, Zeman J, Elleder M (2008) Structural analysis of tissues affected by cytochrome c oxidase deficiency due to mutations in the SCO2 gene. Acta Pathol Microbiol Immunol Scand 116:41–49

    Google Scholar 

  • Weraarpachai W, Antonicka H, Sasarman F et al (2009) Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet 41:833837

    Article  Google Scholar 

  • Weraarpachai W, Sasarman F, Nishimura T et al (2012) Mutations in C12orf62, a factor that ­couples COX I synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic ­acidosis. Am J Hum Genet 90:142–151

    Article  PubMed  CAS  Google Scholar 

  • Willems JL, Monnens L, Trijbels J et al (1977) Leigh’s encephalomyelopathy in a patient with cytochrome c oxidase deficiency in muscle tissue. Pediatrics 60:850–857

    PubMed  CAS  Google Scholar 

  • Williams SL, Valnot I, Rustin P, Taanman J-W (2004) Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX 10, SCO1, or SURF1. J Biol Chem 279:7462–7469

    Article  PubMed  CAS  Google Scholar 

  • Wong LJ, Dai P, Tan D et al (2001) Severe lactic acidosis caused by a novel frame-shift mutation in mitochondrial-encoded cytochrome c oxidase subunit II. Am J Med Genet 102:95–99

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Morin C, Mitchell G, Ackerley C, Robinson BH (2004) The role of LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA. Biochem J 382:331–336

    Article  PubMed  CAS  Google Scholar 

  • Zeviani M, Nonaka I, Bonilla E et al (1985) Fatal infantile mitochondrial myopathy and renal dysfunction caused by cytochrome c oxidase deficiency: immunological studies in a new patient. Ann Neurol 17:414–417

    Article  PubMed  CAS  Google Scholar 

  • Zeviani M, Van Dyke DH, Servidei S et al (1986) Myopathy and fatal cardiopathy due to cytochrome c oxidase deficiency. Arch Neurol 43:1198–1202

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Yao J, Johns T et al (1998) SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet 20:337–343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by NICHD grant P01-H23062 and by the Marriott Mitochondrial Disorder Clinical Research Fund (MMDCRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore DiMauro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

DiMauro, S., Tanji, K., Schon, E.A. (2012). The Many Clinical Faces of Cytochrome c Oxidase Deficiency. In: Kadenbach, B. (eds) Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, vol 748. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3573-0_14

Download citation

Publish with us

Policies and ethics