TY - JOUR T1 - Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing JF - Journal of Medical Genetics JO - J Med Genet SP - 776 LP - 783 DO - 10.1136/jmedgenet-2013-101795 VL - 50 IS - 11 AU - Kevin P Kenna AU - Russell L McLaughlin AU - Susan Byrne AU - Marwa Elamin AU - Mark Heverin AU - Elaine M Kenny AU - Paul Cormican AU - Derek W Morris AU - Colette G Donaghy AU - Daniel G Bradley AU - Orla Hardiman Y1 - 2013/11/01 UR - http://jmg.bmj.com/content/50/11/776.abstract N2 - Background Over 100 genes have been implicated in the aetiology of amyotrophic lateral sclerosis (ALS). A detailed understanding of their independent and cumulative contributions to disease burden may help guide various clinical and research efforts. Methods Using targeted high-throughput sequencing, we characterised the variation of 10 Mendelian and 23 low penetrance/tentative ALS genes within a population-based cohort of 444 Irish ALS cases (50 fALS, 394 sALS) and 311 age-matched and geographically matched controls. Results Known or potential high-penetrance ALS variants were identified within 17.1% of patients (38% of fALS, 14.5% of sALS). 12.8% carried variants of Mendelian disease genes (C9orf72 8.78%; SETX 2.48%; ALS2 1.58%; FUS 0.45%; TARDBP 0.45%; OPTN 0.23%; VCP 0.23%. ANG, SOD1, VAPB 0%), 4.7% carried variants of low penetrance/tentative ALS genes and 9.7% (30% of fALS, 7.1% of sALS) carried previously described ALS variants (C9orf72 8.78%; FUS 0.45%; TARDBP 0.45%). 1.6% of patients carried multiple known/potential disease variants, including all identified carriers of an established ALS variant (p<0.01); TARDBP:c.859G>A(p.[G287S]) (n=2/2 sALS). Comparison of our results with those from studies of other European populations revealed significant differences in the spectrum of disease variation (p=1.7×10−4). Conclusions Up to 17% of Irish ALS cases may carry high-penetrance variants within the investigated genes. However, the precise nature of genetic susceptibility differs significantly from that reported within other European populations. Certain variants may not cause disease in isolation and concomitant analysis of disease genes may prove highly important. ER -