Supplementary Material

for

PSEUDODIASTROPHIC DYSPLASIA EXPANDS THE KNOWN PHENOTYPIC SPECTRUM
OF DEFECTS IN PROTEOGLYCAN BIOSYNTHESIS

Alicia B. Byrne,1,2,* Shuji Mizumoto,3,4,5,* Peer Arts,1 Patrick Yap,6,7,8 Jinghua Feng,2,9 Andreas W. Schreiber,2,9,10 Milena Babic,1 Sarah L. King-Smith,1,11 Christopher P. Barnett,12,13 Lynette Moore,13,14 Kazuyuki Sugahara,3 Hatice Mutlu-Albayrak,15 Gen Nishimura,16 Jan E. Liebelt,12 Shuhei Yamada,3,4 Ravi Savarirayan,6,17 Hamish S. Scott1,2,9,11,13,^

1Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
2School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
3Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya City, Japan
4Research Center for Pathogenesis of Intractable Diseases, Meijo University, Nagoya, Japan
5Department of Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
6Victorian Clinical Genetics Service, Royal Children’s Hospital, Melbourne, Australia
7Genetic Health Service New Zealand (Northern Hub), Auckland, New Zealand
8Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
9ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
10School of Biological Sciences, University of Adelaide, Adelaide, Australia
11Australian Genomic Health Alliance, Melbourne, Australia
12South Australian Clinical Genetics Service, Women’s and Children’s Hospital, North Adelaide, Australia
13School of Medicine, University of Adelaide, Adelaide, Australia
14Department of Surgical Pathology, SA Pathology, Women’s and Children’s Hospital, North Adelaide, Australia
15Department of Pediatric Genetics, Cengiz Gökcek Obstetrics and Children’s Hospital, Gaziantep, Turkey
16Department of Radiology, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
17Department of Paediatrics, University of Melbourne, Melbourne, Australia

*Alicia B. Byrne and Shuji Mizumoto contributed equally to this work

^Corresponding author: hamish.scott@sa.gov.au

CONTENTS

1. Supplementary Figure
 - Figure S1: Western blot analysis of recombinant B3GAT3 and CANT1.

2. Supplementary Table
 - Table S1: Coverage statistics for the exome sequencing results.
SUPPLEMENTARY FIGURE

Figure S1. Western blot analysis of recombinant B3GAT3 and CANT1. (A) Expression level of recombinant B3GAT3 in HEK293T cell lysates. (B) Expression level of recombinant CANT1 in conditioned media from HEK293T cells.
SUPPLEMENTARY TABLE

Table S1. Coverage statistics for the exome sequencing results

<table>
<thead>
<tr>
<th>Coverage statistics WES</th>
<th>1_Mother</th>
<th>1_Father</th>
<th>Patient 1A</th>
<th>Patient 1B</th>
<th>2_Mother</th>
<th>2_Father</th>
<th>Patient 2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average coverage (X)</td>
<td>109.9</td>
<td>84.9</td>
<td>65.8</td>
<td>69.7</td>
<td>147.6</td>
<td>148.3</td>
<td>124.2</td>
</tr>
<tr>
<td>% of targets covered >20X</td>
<td>89.1</td>
<td>88.6</td>
<td>83.2</td>
<td>85.3</td>
<td>94.0</td>
<td>93.9</td>
<td>93.5</td>
</tr>
</tbody>
</table>