Supplemental Data

Detailed clinical descriptions of the patients

Patient 1

Congenital anaemia

A Japanese female patient followed up for intrauterine growth restriction (IUGR) was born at 29 weeks of gestation with a weight of 726 g (−3.3 standard deviation [SD]) and a height of 32 cm (−2.9 SD). Her Apgar score at 5 min was 6. She did not require surfactant replacement therapy, but was on a ventilator for 9 days. Her haematological characteristics are shown in Supplemental Table 1 and Supplemental Figure 1. At birth, she had severe macrocytic anaemia without reticulocytopenia (red blood cells [RBC] 0.95 × 10^{12}/L, haemoglobin [Hgb] level 43 g/L, mean corpuscular volume [MCV] 123 fL, reticulocyte counts 158 × 10^{9}/L, white blood cells [WBC] 2.3 × 10^{9}/L, and platelets 396 × 10^{9}/L). Although she was treated with oral iron supplementation and erythropoietin administration with intermittent transfusion of packed RBC considering anaemia of prematurity, her anaemia did not improve. Oral iron supplementation and erythropoietin administration were discontinued in early infancy. She required repetitive transfusions of RBC once or twice a month. WBC counts (including differential counts) and platelets were normal (Supplemental Figure 1). Reticulocyte counts were mostly within the reference interval, but without marked reticulocytopenia in contrast to those observed in Diamond-Blackfan anaemia (DBA). She was referred to the National Center for Child Health and Development (Tokyo, Japan) during infancy for the evaluation and treatment of anaemia and bloody diarrhoea (details of gastrointestinal symptoms are described below). The examination of bone marrow aspirate revealed erythroid dysplasia, but without marked erythroid hypoplasia (M/E ratio 1.5) (Supplemental Table 1). These findings did not fit the diagnosis of DBA. Immunostaining for TP53 of bone marrow cells showed enhanced signals (Figure 1). The panel sequencing for known DBA-associated genes, including RPS10, RPS14, RPS17, RPS19, RPS24, RPS26, RPL5, RPL11, RPL35A, and TP53, did not detect any pathogenic variant. In toddlerhood, the follow-up bone marrow test demonstrated hypercellularity and revealed dysplasia of trilineage cells with excess blasts (7.5%) that fit myelodysplastic syndrome (MDS), classified into refractory anaemia with excess blasts.
(RAEB)-1 using the World Health Organization (WHO) classification. G-banding karyotyping of the bone marrow aspirate showed a normal female karyotype as 46,XX.

Inflammatory bowel disease

The patient developed chronic bloody diarrhoea and underwent lower gastrointestinal endoscopy during infancy. Inflammatory bowel disease (IBD) (unclassified) was diagnosed based on the endoscopic and pathological findings. Her IBD was intractable to 5-aminosalicylate and exclusive enteral nutrition. Although it responded to corticosteroids, bloody diarrhoea relapsed soon after the discontinuation of corticosteroids. She was dependent on corticosteroids and required a central intravenous catheter for intravenous hyperalimentation to treat malnutrition caused by IBD.

Other clinical features

She had facial dysmorphism with epicanthic folds. She had no nail dystrophy, skin pigmentation, genitourinary anomalies, or café-au-lait patches. Despite adequate caloric intake, she showed no catch-up growth, and her height SD score was –3.1 SD (height 74 cm) in toddlerhood. At this point, hormone-secreting capacities of the anterior pituitary gland and adrenal cortex were investigated, but no abnormalities were found. Magnetic resonance imaging (MRI) showed microencephaly and skull thickening, and a computed tomography (CT) scan detected calcification at the right brachiocephalic artery. Her development was mildly delayed; she began to roll, sat steady, and crawled in late infancy, and walked in late toddlerhood. In early childhood, she could run, use several words, and imitate actions, but could not use two-word phrases, build a tower of two bricks, use a spoon, or express wants with pointing. Clinical features compared to those of FILS and IMAGE-I syndromes are shown in Supplemental Table 2.

Patient 2

Congenital anaemia

Patient 2, the younger female sibling of Patient 1, was born at 37 weeks of gestation with a weight of 2,124 g (–1.6 SD) and height of 43 cm (–1.9 SD). She had a low Apgar score (4 at 5 min) and required
ventilator support for 2 days. She also had epicanthic folds resembling her sibling’s. Her
haematological characteristics are shown in Supplemental Table 1 and Supplemental Figure 2. Her
Hgb level was 54 g/L at birth, there were no decreases in reticulocyte counts, WBC counts, or platelet
counts (RBC 1.71 × 10^{12}/L, MCV 117 fL, reticulocyte counts 30 × 10^9/L, platelets 306 × 10^9/L, and
WBC 12.8 × 10^9/L). Bone marrow examination in infancy showed erythroid dysplasia, but without
marked erythroid hypoplasia (M/E ratio 1.5) (Supplemental Table 1). Immunostaining for TP53 of
bone marrow cells showed enhanced signals (Figure 1). She required repetitive transfusions of packed
RBC once or twice a month. In early toddlerhood, the follow-up examination of the bone marrow
aspirate demonstrated hypercellularity and dysplasia of trilineage cells with excess blasts (8.0%) that
fit MDS, classified into RAEB-1. G-banding karyotyping showed a normal female karyotype as
46,XX.

Other clinical features

She had no nail dystrophy, skin pigmentation, genitourinary anomalies, or café-au-lait patches. She
showed growth failure with height 71 cm (–2.6 SD) in toddlerhood. At this point, hormone-secreting
capacities of the anterior pituitary gland and adrenal cortex were investigated, but no abnormalities
were found. She showed the following typical developmental milestone achievements: began to roll,
sat alone, walked, and used words during infancy. In toddlerhood, considering the abnormal
intracranial findings of Patient 1, brain MRI, MR angiography, and CT scans of head, chest, and
abdomen and pelvis were performed, showing no abnormal findings. Clinical features compared to
those of FILS and IMAGE-I syndromes are shown in Supplemental Table 2.

She had not developed bloody diarrhoea by the follow-up period. She underwent a colonoscopy
for her mild diarrhoea during infancy, but endoscopic and pathological findings of IBD were not
detected.

Supplemental methods:

Immunostaining of bone marrow samples

Clot sections of the bone marrow obtained from Patient 1, Patient 2, and controls (a patient with
immune thrombocytopenia in early childhood and a patient with autoimmune neutropenia in infancy)
were treated with high pH target retrieval solution (Dako, Santa Clara, CA) at 98 °C for 40 min.
Immunostaining was performed with mouse anti-TP53 antibody (DO-7, Dako Nichirei Bioscience,
Tokyo, Japan) and a polymer reagent Simple Stain MAX-PO (MULTI; Nichirei Bioscience) in an
autostainer, i.e., Histostainer (48A, Nichirei Bioscience), for 30 min at room temperature.

Exome sequencing

Genomic screening was conducted under the “Initiative for Rare and Undiagnosed Diseases in
Paediatrics” program supported by the Japan Agency for Medical Research and Development after
obtaining written informed consent from the patients’ parents. Exome sequencing of the patients and
their parents were performed with SureSelect Human All ExomeV6 (Agilent Technologies, Santa
Clara, CA) and the Illumina HiSeq 2500 system (Illumina, San Diego, CA), as previously described.1
We filtered the dataset using the Japanese variant database JPN38K
(https://jmorp.megabank.tohoku.ac.jp). To obtain a list of candidate pathogenic variants, the following
filtering criteria were applied: (1) non-synonymous or frameshift variants in coding exons or splicing
sites, (2) allele frequencies below 0.5% in 38KJPN, and (3) absence of the variant in our in-house
exome data to filter pipeline-specific systematic errors. Potential pathogenicity was assumed from
inheritance patterns — de novo, homozygous, compound heterozygous, or hemizygous — and
functional effects were predicted using SIFT, PolyPhen2, and CADD.
Direct sequencing was performed to confirm the presence of the identified POLE variants. The
genomic DNA samples from the patients were PCR-amplified for the region containing the variant
using AmpliTaq Gold 360 PCR Master Mix (Thermo Fisher Scientific, Waltham, MA). The PCR
products were sequenced with BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher
Scientific) on an ABI 3130 sequencer (Thermo Fisher Scientific).

Functional characterization of POLE variants

A vector containing human POLE cDNA (FHC24944) was purchased from Kazusa DNA Research
Institute (Chiba, Japan). We modified the pBQM812A-1 vector (System Biosciences, Palo Alto, CA)
by replacing the cumate-inducible promoter with a doxycycline-inducible promoter and the CymR repressor sequence with the reverse tetracycline transactivator sequence. POLE cDNA was cloned into the modified vector by adding the haemagglutinin (HA) sequence to the N-terminus using the Gibson assembly technique (NEBuilder HiFi DNA Assembly Master Mix; New England Biolabs, Ipswich, MA). We introduced c.3392del and c.5672_5674del into the wildtype (WT)-POLE1-expressing vector using a standard PCR-based method. HEK293 cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 50 U/mL penicillin, 50 μg/mL streptomycin, and 10% foetal bovine serum (FBS). The cells were transfected with each vector using Lipofectamine 3000 reagent (Thermo Fisher Scientific), and inducible stable cell lines were established according to the protocol for pBQM812A-1.

For Western blotting, nuclear and cytoplasmic extracts were prepared from inducible stable HEK293 cells expressing each HA-POLE1 (WT, Asp1131fs or Thr1891del). The cells cultured in 10-cm dishes were treated with 1 μg/mL doxycycline for 24 h. The cells were harvested using 0.25% trypsin-ethylene diamine tetra acetic acid (EDTA) solution and centrifuged at 2,000 rpm for 3 min. Cell pellets were lysed in five times the pellet volume (PV) of hypotonic lysis buffer (10 mM Tris, pH 8.0, 1.5 mM MgCl₂, 10 mM KCl, and 1 mM dithiothreitol with a protease inhibitor cocktail) and allowed to swell on ice for 15 min. Triton X-100 was added to a final concentration of 0.6%, and the samples were vortexed for 10 seconds. The homogenates were pelleted by centrifugation at 10,000 × g for 30 seconds, and the supernatants were stored as cytoplasmic lysates. The nuclear pellets were suspended in extraction buffer (20 mM Tris pH 8.0, 1.5 mM MgCl₂, 420 mM NaCl, 0.2 mM EDTA, 25% glycerol, and 1 mM dithiothreitol with a protease inhibitor cocktail) at two-thirds volume of the PV and rotated for 15 min at 4 °C. The homogenates were centrifuged at 20,000 × g for 5 min, and the supernatants were stored as cytoplasmic lysates. Nuclear and cytoplasmic extracts were separated using 10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE).

Immunoblotting was performed with rat anti-HA antibody (clone 3F10; Sigma-Aldrich, St. Louis, MO), rat anti-tubulin antibody (YL1/2; Abcam, Cambridge, UK) and rabbit anti-histone H3 antibody (ab1791; Abcam) as primary antibodies, and horseradish peroxidase (HRP)-conjugated goat anti-rat IgG (Sigma-Aldrich) and HRP-conjugated goat anti-rabbit IgG (Sigma-Aldrich) as secondary
antibodies.

To visualize subcellular localization of each HA-POLE1 protein (WT, Asp1131fs or Thr1891del), inducible stable HEK293 cells were seeded on glass-bottom dishes and grown with 1 μg/mL doxycycline for 24 h. The cells were then fixed in 4% formaldehyde in phosphate-buffered saline (PBS) at room temperature for 10 min. Blocking and plasma membrane permeabilization were performed by incubating the cells with 4% Block Ace (KAC, Kyoto, Japan) and 0.1% Triton X-100 at room temperature for 1 h. Immunofluorescence was performed using rat anti-HA antibody (clone 3F10) and rabbit anti-POLE2 antibody (HPA02755; Thermo Fisher Scientific) as primary antibodies, and Alexa Fluor 488-conjugated donkey anti-rat IgG antibody (A21208, Thermo Fisher Scientific) and Alexa Fluor 647-conjugated goat anti-rabbit IgG antibody (A27040; Thermo Fisher Scientific) as secondary antibodies. Nuclei were stained with Hoechst 33342 (Dojindo Laboratories, Kumamoto, Japan). The cells were observed under an FV3000 confocal microscope (Olympus, Tokyo, Japan).

Generation of patient-derived induced pluripotent stem cells (iPSCs)

Human iPSCs were generated and maintained on iMatrix-511 (Nippi, Inc., Tokyo, Japan) in StemFit AK02N (Reprocell, Inc., Kanagawa, Japan) or StemFlex (Thermo Fisher Scientific) media. For Patient 1, a small intestinal tissue biopsy specimen obtained from the patient was chopped into small pieces and seeded on a dish in DMEM/F12 (Thermo Fisher Scientific) containing 20% FBS. The medium was changed every 2 days until confluence. Intestinal epithelial cells were maintained in DMEM/F12 containing 20% FBS until reprogramming. On the first day of reprogramming, we changed the culture medium to NutriStem Medium (Sartorius Stedim Biotech, Göttingen, Germany) and used the StemRNA-3rd Gen Reprogramming Kit (Reprocell, Inc.) to induce six reprogramming factors, including OCT4, SOX2, KLF4, c-MYC, NANOG, and LIN28, following the manufacturer’s protocol. From days 2-4, we replaced the fresh NutriStem medium and transfected a reprogramming cocktail using Lipofectamine RNAiMAX (Thermo Fisher Scientific) every day. From day 5, the old medium was changed every 2 days until colony pickup.

For Patient 2, peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of the patient by centrifugation on Ficoll-Paque gradient using Leucosep (Greiner Bio-One).
International GmbH, Frickenhausen, Germany) following the manufacturer’s protocol. The CytoTune-
iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher Scientific) was used to induce four
reprogramming factors, including OCT4, SOX2, KLF4, and L-MYC. PBMCs were infected with
Sendai virus vector at 37 °C in a 5% CO₂ incubator for 2 h. Next, the infected PBMCs were seeded
into iMatrix-511-coated 12-well plates (AGC Techno Glass Co., Ltd., Shizuoka, Japan) in KBM 501
medium (Kohjin Bio Co., Ltd., Saitama, Japan) with 10% FBS (Thermo Fisher Scientific). On days 2
and 4, 1 mL of StemFit AK02N medium was added gently to avoid disturbing cell adhesion, after
which the entire medium was changed every 2 days until colony pickup.

From days 14-21, individual colonies were picked into iMatrix-511-coated 4-well plates (Thermo
Fisher Scientific) in StemFit AK02N medium supplemented with 10 μM Y-27632 (Fujifilm Wako Pure
Chemical Corporation, Osaka, Japan) or in StemFlex medium supplemented with 10 μM Y-27632. The
medium was changed every other day and cells were passaged approximately once per week using
enzymatic (TrypLE Select Enzyme or Accutase Cell Dissociation Reagent; Thermo Fisher Scientific)
or mechanical methods.

RNA sequencing (RNA-seq) analysis

Total RNA was extracted from the iPSCs generated from the POLE variant carriers and control
individuals (three lines for Patient 1, one line for Patient 2, and one line each from the two controls)
using TRIzol reagent (Thermo Fisher Scientific) following the manufacturer’s instructions. The RNA
samples were treated with TruSeq Stranded Total RNA Library Prep Kit (Illumina), and the libraries
were sequenced on DNBSEQ-T7 (MGI Tech Co., Ltd., Shenzhen, China). Reads were aligned to the
reference human genome hg38, visualized with Integrative Genomics Viewer
(https://software.broadinstitute.org/software/igv/), and reads per gene were counted using STAR-
2.7.9a software. Within-sample normalization was conducted using the fragments per kilobase million
method, and between-sample normalization was performed using the trimmed mean of the M-values
method.

Western blotting of TP53 protein
For Western blotting, nuclear proteins were extracted from iPSCs generated from the patients, and normal controls (two iPSC lines each). First, the cells grown in 10-cm dishes were harvested using 0.25% trypsin-EDTA solution and centrifuged at 2,000 rpm for 3 min. Cell pellets were lysed in five times the PV of hypotonic lysis buffer (10 mM Tris, pH 8.0, 1.5 mM MgCl₂, 10 mM KCl, and 1 mM dithiothreitol with a protease inhibitor cocktail) and allowed to swell on ice for 15 min. Triton X-100 was added to a final concentration of 0.6%, and the samples were vortexed for 10 s. The homogenates were pelleted by centrifugation at 10,000 × g for 30 seconds and the supernatants were discarded. The nuclear pellets were suspended in extraction buffer (20 mM Tris pH 8.0, 1.5 mM MgCl₂, 420 mM NaCl, 0.2 mM EDTA, 25% glycerol, and 1 mM dithiothreitol with a protease inhibitor cocktail) at two-thirds volume of the PV and rotated for 15 min at 4 °C. The homogenates were centrifuged at 20,000 × g for 5 min, and the supernatants (nuclear fraction) were separated using 10% SDS-PAGE. Immunoblotting was performed with mouse anti-TP53 antibody (DO-7) and rabbit anti-histone H3 antibody (ab1791) as primary antibodies, and HRP-conjugated goat anti-mouse IgG (Sigma-Aldrich) and HRP-conjugated goat anti-rabbit IgG (Sigma-Aldrich) as secondary antibodies.

Generation of Pole-deficient medaka

Supplemental Figure 3 shows the sequence alignment of human and medaka Pole orthologues. We designed two crRNAs that recognize the sequences ACG TAG AAT ACA TCA CCA AC (site 1) and GAA TAC ATC ACC AAC AGG TC (site 2) of the medaka DNA polymerase epsilon (Pole) gene to establish a Pole mutant using CRISPR/Cas9. Partial sequences of medaka Pole, two crRNA recognition sites, and PCR primers for the amplification of the target region are shown in Supplemental Figure 4. The formation of duplex guide ribonucleoproteins (dgRNP) is in accordance with that reported by Hoshijima et al. The crRNA, tracrRNA, and Cas9 proteins were purchased from Integrated DNA Technologies (IA). The PCR primers (CAT CTT GTG CAC CAA AAA GC and AAG TCT TGG GGT TTT GAA AT) were purchased from Fasmac (Kanagawa, Japan). Microinjection and establishment of Pole knockout strains are in accordance with “Medaka: Biology, Management, and Experimental Protocol, Volume 2”. Briefly, microinjected with dgRNPs into embryos at the 1 cell stage, eggs were incubated for 4 days at 25 °C, and the genomic DNA was extracted and subjected to
PCR amplification. The efficiency of genome editing was evaluated using an automated
electrophoresis system MCE-202 with a DNA-500 reagent kit (Shimadzu, Kyoto, Japan). Two
dgRNPs were designed to efficiently edit the target DNA regions. Following the selection of four pairs
of founder fish, we observed the phenotypes of the next generation. Two out of the four pairs of
founder fish laid eggs with a specific phenotype. We selected four founder fish, No. 5, No. 6, No. 7,
and No. 8, and mated them with WT fish. Supplemental Figure 5 shows the types of insertions or
deletions identified in the target region of the F1 fish using amplicon sequencing. As a result, we
established two mutant lines, one with a 4 bp deletion mutation using one crRNA (site 2) and another
with a 9 bp deletion mutation using another crRNA (site 1) at the Pole gene. We named these two
mutant strains Pole^del4 and Pole^del9, respectively. Two mutant strains Pole^del4 and Pole^del9
showed essentially similar phenotypes, and thus we used the Pole^del9 strain for further analysis. As
shown in Supplemental Figure 4, the Pole^del9 strain deleted the splice-acceptor site and was
expected to be non-functional.

Morphological observation of medaka

Medaka has a more extended period time from fertilization to hatching than zebrafish. For this reason,
the length of the body and other developmental phenotypes in pre-hatched embryos cannot be
accurately analysed. Therefore, we dissolved the chorion using hatching enzymes7,8 and observed the
embryos. The hatching enzyme was supplied by NBRP Medaka (https://shigen.nig.ac.jp/medaka/).
Seven days after fertilization, the eggs were transferred to waterproof sandpaper (#1200) (AS One,
Osaka, Japan) placed in the lid of a 10-cm Petri dish. Breeding water was removed, and a moderate
amount of Iwamatsu’s balanced salt solution (BSS)9 was added to prevent the drying of the eggs. The
eggs were slowly rolled to remove outer surface hairs and lightly scratch the surface of the eggs. The
eggs were then transferred to a 24-well plate, and the BSS was removed. The hatching enzyme diluted
three times in BSS was added so that the eggs were immersed and incubated at 27 °C. As soon as the
embryos emerged from the chorion, embryos were transferred to a Petri dish containing 1 × BSS. The
embryos were captured using a microscope camera (Zeiss Axiocam 208 colors; Carl Zeiss Meditec,
Jena, Germany) attached to a stereomicroscope (model M165C; Leica, Wetzlar, Germany).
Blood cell counts of medaka

Following anaesthesia with tricaine methane sulfonate (MS222; Sigma-Aldrich), the fish’s heart was exposed by dissection. Blood was collected from the bulbus arteriosus using glass capillaries (GD-1; Narishige, Tokyo, Japan) coated with 10,000 U/mL heparin sodium salt (Wako, Osaka, Japan). In our experiments, we used Dulbecco’s modified PBS (DPBS), treated to remove Mg$^{2+}$ and Ca$^{2+}$ ions ([DPBS (–)]) to prevent coagulation during the dilution of whole blood when necessary. Total blood cells were diluted to 1:200, stained with Shaw’s diluent, and counted using a haemocytometer. Blood cells (2 × 105 cells) diluted in DPBS (–) containing 2.5% FBS were centrifuged (Cytopro 7620; Wescor Inc., Logan, UT) at 1,000 rpm for 4 min to prepare cell centrifuge specimens and transferred onto glass slides. After air drying, cells were stained with o-dianisidine (Wako) and Giemsa (Wako) as previously described. Blood cells were examined by light microscopy (model BX51; Olympus, Tokyo, Japan).

Statistical analysis

Data were analysed using the GraphPad Prism 9.1.2 software (GraphPad Software, Inc., San Diego, CA). The two-group datasets were analysed using Student’s t-test. Statistical significance was set at $P < 0.05$.
References

