Phenotypic spectrum and genomics of undiagnosed arthrogryposis multiplex congenita

ABSTRACT

Background Arthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) when compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families.

Methods Several genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate new variants.

Results We achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRRG6, ADCY6, GLDN, LGH4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%).

Conclusion New genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.

INTRODUCTION

Arthrogryposis multiplex congenita (AMC) is a developmental condition characterised by joint contractures in two or more body areas resulting from reduced or absent fetal movements. AMC has an overall incidence of 1 in 3000 to 5000. AMC is the direct consequence of reduced fetal movements...
Developmental defects

which may lead, in addition to AMC, to ptterygia, pulmonary hypoplasia, diaphragmatic defect or cleft palate.

There are multiple causes of AMC including (i) genetic defects, (ii) congenital infections with cytomegalovirus, varicella zoster virus, rubella virus and more recently Zika virus, (iii) extrinsic causes leading to limitations of fetal movements such as multiple pregnancy, oligohydramnios, amniotic bands or anatomical abnormalities of the uterus and (iv) maternal immune diseases such as myasthenia gravis.²

The genetic causes of AMC identified to date include a large spectrum of diseases which arise as a result of variants in genes encoding components required for the formation or the function of neuromuscular junctions, skeletal muscle, motor neurons, myelin of peripheral nerve, connective tissue of tendons and joints or central nervous system including brain with or without spinal cord anomalies.² A total of 402 genes have been reported so far in AMC.³

There are multiple benefits for having a diagnosis and genetic evaluation for patients with AMC and their families. Indeed a specific diagnosis can precise the recurrence risks for relatives and is very helpful for the health surveillance and management required including physical therapy, orthopaedic treatment, and for the long-term prognosis.

Many AMC individuals remain without a genetic diagnosis suggesting the involvement of other pathogenic mechanisms or missed diagnosis owing to genetic heterogeneity. Our main goals were to improve the diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new AMC genes. Here, we further explored genetic alterations in a cohort of 315 genetically undiagnosed and unrelated AMC families.

PATIENTS AND METHODS

Patients
A total of 315 unrelated families were included from 2011 to 2019 (online supplemental table S1). Inclusion criteria consisted of joint contractures in two or more body areas identified during pregnancy or at birth, without an unequivocal etiological diagnosis after clinical assessment by paediatricians, neuropaediatricians, fetal pathologists or clinical geneticists using targeted gene Sanger sequencing, chromosomal microarray (CMA) or molecular analysis of SMN1 (MIM: 600354) or DMPK (MIM:605377). The search for rubella or CMV infection was systematically performed. The parents of all affected individuals provided written informed consents for pathological examinations and genetic analyses of their affected children or fetuses and themselves in accordance with the ethical standards of our institutional review boards.

METHODS

Genetic mapping of disease loci
At the beginning of this study, genetic mapping of disease loci was performed in 15 multiplex and/or consanguineous families using Affymetrix GeneChip Human Mapping 250K NspI microarray. Multipoint linkage analysis of SNP data was performed using the Alohomora⁴ and Merlin software.⁵ In these families, genetic mapping was followed by either Sanger sequencing when a highly candidate gene was located within one of the disease loci (n=7) or by WES (n=8, figure 1).

Targeted exome sequencing (TES)
TES was performed on the DNA sample of affected individuals with AMC of unknown origin (n=210, figure 1). TES was performed using the Agilent SureSelectXT Custom kit (targeting 500 Kb including AMC genes and candidate genes for library preparation and exome enrichment). Sequencing was performed on an Illumina MiSeq System using paired-end 150 bp reads and following Illumina’s protocol using the MiSeq Reagent Micro Kit, V2. The median coverage was 90×. Variants were selected using the same criteria as those used for WES data.

Whole exome sequencing (WES)
WES was performed from DNA of the index patient (n=209). WES used the Exome Capture Agilent SureSelect XT V5 kit for library preparation and exome enrichment as previously

Figure 1 Genomic approaches including genetic mapping, TES or WES. n: number of unrelated patients and in brackets the percentage of index patients with disease gene identification (Gene Id.). Other approaches (n=4) included CMA, SMN1, MTM1 or NIPBL analyses. TES, targeted exome sequencing; WES, whole exome sequencing.
Bioinformatics analysis

Reads were aligned to the human reference genome sequence (UCSC hg19, NCBI build 37.3) via the BWA programme. Variants were selected using the SAMTools and then annotated using Annovar softwares. Variants in coding regions (including non-synonymous and nonsense variants), intron-exon junctions (≤10 bp) or short coding insertions or deletions were selected when the minor allele frequency was less or equal to 0.005 (using 1000G, ExAC, TopMed and GnomAD). Prediction of pathogenicity of missense variants was performed using Polyphen-2 (with score ≥0.5) or Sift softwares (with score ≤0.05). Identification of missense variants was done using Human splicing finder or Clinvar (NCBI).

Sanger sequencing

Direct Sanger sequencing of candidate gene(s) located within the disease loci as established by genetic mapping was performed in seven families. Variants identified through either TES or WES were validated by Sanger sequencing. PCR amplification was carried out as previously described. PCR products were purified and then sequenced using the forward or reverse primers (Eurofins Genomics). The obtained DNA sequences were compared with published sequences (BLAST, NCBI). Sanger sequencing was also performed to establish the genotype of each family member and to analyse the segregation of variants within each family.

Other investigations

For recently identified genes, morphological analyses of skeletal muscle, neuromuscular junction or peripheral nerve were performed from patient samples and reported in separate reports. Functional validation of recently identified disease genes was investigated through the generation and characterisation of animal (C. elegans or Zebrafish) or cellular models and described in separate reports. When splicing mutations were identified, RNA analysis was performed to validate the pathogenic effects of mutations on RNA stability or exon splicing. Statistical analyses were performed using Fisher’s exact test two tailed.

RESULTS

CLINICAL DATA

A total of 315 AMC families were included in this study from 2011 to 2019 (figures 1 and 2 and online supplemental table S1). AMC was sporadic in 226 families and familial (with at least two affected individuals) in 89 families (figure 2). In patients with sporadic AMC (n=226), 45 of them were born to consanguineous parents and unknown in 30 families. In familial AMC (n=89), parents were consanguineous in 30 families, non-consanguineous in 54 and unknown in 5 (figure 2).

AMC was detected during pregnancy in 251 out of 315 families (80%), after birth in 62 families (20%) and not reported in 2 families (online supplemental table S1). During pregnancy, AMC was detected through ultrasound examination of the first trimester in 86 families (34%), second trimester in 103 families (41%) and third trimester in 27 families (11%). In 35 fetuses, the exact age of discovery of AMC during pregnancy was not reported.

The AMC was classified as non-syndromic versus syndromic depending on the identification of additional features not related to the fetal akinesia sequence. A total of 213 families was classified as non-syndromic (67.6%) and 102 as syndromic AMC (32.4%, table 1 and online supplemental table S1). The associated features were umbilical artery anomalies (n=3), brain involvement (including cognitive impairment, epilepsy, corpus callosum agenesis, perisylvian polymicrogyria, cerebellum hypoplasia, microcephaly, ventriculomegaly or macrocephaly, n=45), cardiac anomalies (such as cardiomyopathy or congenital heart defects, n=17), kidney anomalies (including unilateral or bilateral pylectasia, unilateral renal agenesis, renal hypoplasia or urolithiasis, n=10), intrauterine growth retardation (n=30), bone agenesis (n=2), ears (such as hearing loss or unilateral ear hypoplasia, n=4) or eye anomalies (microphthalmia or cataract, n=5). Facial haemangioma was found in 12 affected individuals.

Among syndromic AMC (n=102), both AMC and additional clinical features were discovered during pregnancy in 58 affected individuals (56.8%). In 19 affected individuals (18.6%), AMC and associated features were discovered after birth. Importantly, in 25 affected individuals (24.5%), AMC was diagnosed during pregnancy but not the associated features including brain anomalies in 17 of them (online supplemental table S1).

GENETIC RESULTS

Genomic strategies and results

At the start of this study, genetic mapping of disease loci was performed in 15 families with at least two affected individuals or in sporadic affected individuals born to consanguinous
unrelated AMC carrying pathogenic variant(s) in a given gene to 166, the total number of index patients with an identified disease gene. The blue colour

Table 1 Summary of the main clinical features found in our cohort of 315 patients

<table>
<thead>
<tr>
<th>Main clinical features</th>
<th>Total number of cases</th>
<th>Number of cases with identified gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC</td>
<td>315</td>
<td>166</td>
</tr>
<tr>
<td>AMC prenatal discovery</td>
<td>25(315)</td>
<td>129(166)</td>
</tr>
<tr>
<td>AMC postnatal discovery</td>
<td>62(315)</td>
<td>36(166)</td>
</tr>
<tr>
<td>AMC unknown age of discovery</td>
<td>2(315)</td>
<td>1(166)</td>
</tr>
<tr>
<td>IUGR</td>
<td>30(315)</td>
<td>7(166)</td>
</tr>
<tr>
<td>Ombilical artery anomaly</td>
<td>3(315)</td>
<td>0(166)</td>
</tr>
<tr>
<td>Liver anomalies</td>
<td>4(315)</td>
<td>1(166)</td>
</tr>
<tr>
<td>Eye anomalies</td>
<td>5(315)</td>
<td>3(166)</td>
</tr>
<tr>
<td>Ear anomalies</td>
<td>4(315)</td>
<td>2(166)</td>
</tr>
<tr>
<td>Sex anomalies</td>
<td>6(315)</td>
<td>3(166)</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>9(146)</td>
<td>6(166)</td>
</tr>
<tr>
<td>Intellectual disability</td>
<td>16(146)</td>
<td>6(166)</td>
</tr>
<tr>
<td>Brain malformation</td>
<td>19(315)</td>
<td>6(166)</td>
</tr>
<tr>
<td>Bone agenesis</td>
<td>2(315)</td>
<td>1(166)</td>
</tr>
<tr>
<td>Congenital heart defect</td>
<td>14(315)</td>
<td>9(166)</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>3(315)</td>
<td>0(166)</td>
</tr>
<tr>
<td>Kidney anomalies</td>
<td>10(315)</td>
<td>3(166)</td>
</tr>
<tr>
<td>Haemangioma</td>
<td>12(146)</td>
<td>8(166)</td>
</tr>
</tbody>
</table>

The percentage in (a) is the number of index patients with additional clinical features reported to the total number of AMC index patients (n=315) except when the clinical features may be detected after delivery only (n=146). The percentage in (b) is the number of index patients with additional clinical features reported to the total number of AMC index patients with identified gene only (n=166) except when the clinical features may be detected after delivery only (n=83).

parents. When a highly candidate AMC gene was identified within a disease locus, direct Sanger sequencing of the gene was performed. Otherwise, WES was performed in the index patient. The disease gene was identified in all patients (figure 1, online supplemental table S1) including seven recently identified disease genes (ADCY6 (MIM: 600 294), CNTNAP1 (MIM: 602 346), GLDN (MIM: 608 603), LGI4 (MIM: 608 303), LMOD3 (MIM: 616 112), MAGEL2 (MIM: 605 283) and UNC50 (MIM: 617 826), figures 1 and 3, (online supplemental table S1) and 13–18.

Then, targeted exome sequencing of genes known to be frequently involved in AMC or new candidate genes was performed in 210 index patients (figure 1). The first panel included 67 genes and then moved to 84. The genetic cause was identified in only 68 affected individuals (32%) suggesting that other genes responsible for syndromic or non-syndromic AMC were not included in the panels, or novel genes not yet identified as responsible for AMC. In the patients with undiagnosed AMC, the phenotype was first re-evaluated based on the clinical data or muscle biopsy and led to other investigations including CMA, SMN1, MTM1 (MIM: 300415) or NIPBL (MIM: 608667) analysis which allowed the identification of the disease causing gene defect in four patients (see online supplemental table S1). In 27 negative TES, other investigations including WES were not performed because of the limited DNA quantity of the index patient. When no predicted pathogenic variants were identified through TES, WES sequencing was performed in 111 index patients (figure 1). WES allowed the identification of the disease causing gene in 24 index patients (21.6%). Among the genes identified, some of them were not included in the first TES gene panel such as BICD2 (MIM: 60979715), DYNC1H1 (MIM: 60011226), GBE1 (MIM: 60783927), SCN4A (MIM: 60396722) and NALCN (MIM: 61154922) which have been shown to be responsible for AMC since 2013. Others are genes responsible for disease for which joint contractures were not reported as the main clinical features such as ASXL3 (MIM: 61511524), STAC3 (MIM: 61552129), USP9X (MIM: 30007220) and three recently identified genes including GLDN (MIM: 60860314), LGI4 (MIM: 60830315) and SCN1A (MIM: 18238927 figure 3).

In seven index patients, WES allowed the identification of pathogenic variants in ACTA1 (MIM: 102610), AGRN (MIM: 103320), MUSK (MIM: 601296), TPM2 (MIM: 190990), TTN (MIM: 188840) and ZC4H2 (in two patients, MIM: 300897) due to bad coverage of the variants through the TES panels (online supplemental table S1).

WES was therefore performed in the first line in 90 index patients and the disease gene was identified in 55 of them (61.1%, figure 1). This strategy allowed us to confirm four recently identified AMC causing genes including CNTNAP1, MAGEL2, ADGRG6, SCN1A13 17 27 28 or genes recently identified by other teams including TOR1AIP1 (MIM: 61451226) and SLC6A9 (MIM: 60101930 online supplemental table S1 and figure 3).

Altogether, the disease gene was identified in 166 out of 315 index patients (52.7%) and the number of disease genes found in our AMC cohort was 51 (figure 3). New genes recently identified in AMC in the last 6 years were found in 35 index patients and represent 21.1% of disease causing genes in our cohort (CNTNAP1, MAGEL2, GLDN, LMOD3, SCN1A, ADGRG6,
Pathogenic mechanisms in syndromic and non-syndromic AMC

This study allowed an evaluation of the pathogenic mechanism through the function of the identified gene. The percentage indicates the ratio of patients carrying a mutation in a group of genes involved in a given function to 165, the total number of index patients with an identified disease gene (without the patient carrying the chromosomal translocation). AMC, arthrogryposis multiplex congenita; NMJ, neuromuscular junction.

Comparative analysis of genomic results in familial versus sporadic, consanguineous versus non-consanguineous AMC patients

The identification of disease causing genes in 166 AMC families allowed a better evaluation of the distribution of modes of inheritance (figure 5). In 40 index patients (24.1%), the mode of inheritance was autosomal dominant with 70% of de novo variants. It was autosomal recessive in 110 index patients (66.3%), X linked in 10 (6%) with a de novo variant in 6 of them and autosomal dominant with parental imprinting in 6 index patients (3.6%) with MAGEL2 mutations with a de novo variant in 4 of them. Altogether, the percentage of de novo variants was 22.9% (38 out of 166). The most frequent mode of inheritance of AMC is autosomal recessive which represents 66.3% of diagnosed patients in our cohort.

We then compared the number of AMC families in whom the gene was either identified or not depending on whether the AMC was familial or sporadic and in sporadic patients born to consanguineous parents or not (figures 2 and 6). There was a highly statistically significant difference in gene identification in familial AMC (66 out of 89, 74%) when compared with sporadic AMC (100 out of 226, 44%, Fisher’s test, p<0.0001). In sporadic AMC, there was also a statistically significant difference in gene identification in patients born to consanguineous parents (29 out of 45, 64%) when compared with those born to
Developmental defects

Figure 5 Modes of inheritance based on disease gene identification. The percentage indicates the ratio of patients carrying pathogenic variants (s) with a given mode of inheritance (n) to 166, the total number of index patients with an identified disease gene.

Figure 6 Modes of inheritance of sporadic patients with AMC based on disease gene identification. De novo mutations include AD, AD with parental imprinting or X linked modes of inheritance. The percentage indicates the ratio of AMC with autosomal recessive or de novo mutation to the total number of CSG (n=29) or non-CSG index patients (n=60) with an identified disease gene. Statistical analysis was performed using Fisher’s exact test two tailed. AD, autosomal dominant; AMC, arthrogryposis multiplex congenita; CSG, consanguineous.

Among sporadic patients and based on gene identification, the most frequent mode of inheritance was autosomal recessive in patients born to consanguineous parents (89.6%, 26 out of 29 patients with homozygous variants in 25 of them) when compared with 43.3% (26 out of 60) in patients born to non-consanguineous parents (Fisher’s test, p<0.0001, figure 6). Importantly, de novo dominant autosomal or X linked variants were observed in 30 out of 60 sporadic patients born to non-consanguineous parents (50%) when compared with 3% in sporadic patients born to consanguineous parents (1 out of 29 patients, Fisher’s test, p<0.0001, figure 6). Although in 15 multiplex and/or consanguineous families, genetic mapping allowed the identification of disease loci, WES or direct Sanger sequencing detected pathogenic variants similar to those found using TES or WES only indicating that these highly statistically significant differences in gene identification in multiplex or consanguineous

AMC families compared with non-consanguineous patients with sporadic AMC are not caused by the nature or the position of the identified variant.

DISCUSSION

Pipis et al reported that in Charcot Marie Tooth disease (CMT), WES is a valuable research tool, with independent groups reporting diagnostic rates of 19%–45% in individuals with CMT or complex neuropathy for whom previous genetic testing was negative.32 Similarly, Ghaoui et al reported that using WES, pathogenic variants were identified in 45% of patients with limb-girdle muscular dystrophy.33 In AMC, a conclusive genetic diagnosis was established in 47% in an Australian cohort of 38 families34 suffering from fetal akinesia/hypokinesia, arthrogryposis or severe congenital myopathies and 58.3% including candidate genes in a Turkish cohort of 48 AMC families.35 More recently, Ravenscroft et al performed next generation sequencing in 190 probands and 81 of them received a genetic diagnosis (42.6%).31 In our cohort of 315 AMC families, the largest one reported to date, our results indicate that WES is the most efficient approach with an ability of disease gene identification in 61% of AMC index patients. Our data showed indeed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of recently published novel genes.

Indeed, this strategy allowed the identification of new AMC disease mechanisms which have been published as separate reports such as proteins involved in node of Ranvier formation (CNTNAP1, GLDN),13 axoglial interaction for peripheral myelinlation (ADCY6, ADGRG6, LGI4),13 28 AChR trafficking (UNC50),18 organisation of sarcomeric thin filaments in skeletal muscle (LMOD3),16 brain development (MAGEL2)17 and Na+ channel function in motor cortex (SCN1A).52 Other recently identified disease genes such as TOR1AIP1,29 SCL6A930 or NALCN26 were also found in our AMC cohort. Altogether, genes recently identified since 2014 in either non-syndromic or syndromic AMC were found in 21.1% of disease causing genes in our cohort. In addition, we identified pathogenic variants in AXL3,24 STAC3,25 USP9X26 genes in patients with AMC broadening the phenotypic spectrum of variants in these genes. Variants in TTN, CHRNG, RYR1 and ECELI genes were found in 46 out of 166 AMC index patients in whom the disease gene was identified (27.7%) representing therefore the most prevalent
genetic causes of AMC (figure 3). Our results confirmed the
marked genetic heterogeneity in AMC. Indeed, a total of 51
disease genes were identified in our cohort and for 21 of them,
pathogenic variants were identified in a single family. New candidate
genes have been recently reported in autosomal-recessive AMC
but no predicted or possibly pathogenic variants in these
candidates were identified in our cohort.

In 47.3% of AMC index patients, a genetic cause was not
established. Whole genome sequencing (WGS) has shown its
superior diagnostic and analytical sensitivity to WES owing to
its ability to assess SNVs (single nucleotide variation), indels and
CNVs (copy number variation) in coding and non-coding regions
and more complete per-base coverage. WGS yield has not been
evaluated in AMC to date and should be proposed when the
genetic cause is not established. WES or TES analysis of the
index patient and not trio is likely a weakness of our approach
for the detection of de novo variants in new genes. Neverthe-
less, the reanalysis of WES in our cohort of undiagnosed patients
allowed the selection of predicted pathogenic variants in shared
genes than the analysis of the intrafamilial segregation through
Sanger analysis. This allowed the recent identification of de novo
heterozygous variants of SCN1A in three unrelated AMC index
patients.57 One hypothesis for unidentified disease causing gene
would be the involvement of a digenic mechanism. However,
when looking at possibly pathogenic heterozygous variant in a
given gene known to be responsible for AMC, we did not
observe a recurrent association with a variant in another known
AMC gene. An alternative hypothesis could be the occurrence
of somatic mosaicism either dominant or recessive in combina-
tion with germlinal allelic variant. Further investigation including
the genetic analysis of affected tissues from patients could help
answer this hypothesis. Another hypothesis to explain also the
marked difference between either consanguineous or familial
AMC and sporadic AMC is that in numerous patients, the cause
of AMC is not genetic such as possibly novel maternal immune
disease(s) or viral infection such as recently described in AMC
cause by Zika virus infection which might be added to rubella
and CMV screening in AMC.37

Importantly, the analysis of this large cohort revealed that,
based on the identified gene, the most frequent cause of AMC
was a primary involvement of skeletal muscle in 40.6% of index
patients (n = 67) followed by brain involvement with or without
spinal cord defect which represents 22.4% of AMC (n = 37).
Among syndromic AMC (n = 102), in 25 affected individuals,
ultrasound examinations during pregnancy were normal except
AMC. Among them, brain involvement was identified after
birth in 17 index patients and variants in BICD2, CNTNAP1,
MAGEL2, NALCN, SCN1A, SLC6A9 or ZC4H2 genes were
found in 9 of them. Therefore, during pregnancy and when the
AMC is observed through ultrasound examinations, the identifi-
cation of the disease gene using a large gene panel or WES is crit-
ical for parent information especially when brain involvement is
predicted or not through gene identification. Altogether, central
nervous system involvement was observed in 44 out of 315 AMC
individuals (14%) and was characterised by either isolated or
associated neurologic symptoms including, for the most frequent
symptoms, epilepsy (n = 9), intellectual disability (n = 16) or brain
malformations (n = 19, online supplemental table S1).

We found that the contributions of de novo and recessive
variants were quite different among consanguineous and non-
consanguineous sporadic patients with AMC based on gene
identification. As expected, an autosomal-recessive inheritance
is the most frequent mode of inheritance in sporadic patients born
to related parents (90%) when compared with 43% in sporadic
patients born to unrelated parents. Importantly, de novo coding
variants were observed in 50% of sporadic patients born to
unrelated parents (when compared with 3% in patients born to
related parents) and recessive coding variants in 43%. Interest-
ingly, the contribution of de novo dominant variants was quite
similar in sporadic patients with AMC born to unrelated parents
(50%) to that reported in probands with European ancestry from
the large Deciphering Developmental Disorders Study
(DDD, 49.9%,36). In the DDD study, 88% had an abnormality
of the nervous system including intellectual disability or autism.
Therefore, even the phenotypes of their patients were quite
different from the one reported here, a similar and high propor-
tion (∼50%) of de novo variants was observed indicating that
de novo dominant mutations play a prominent part in pathogenic
mechanism of developmental diseases.

The benefits of an accurate genetic diagnosis include a better
understanding of prognosis, more tailored management of AMC
and possibly other organ involvement and improved surveil-
lance. A precise genetic diagnosis of AMC enables an accurate
genetic advice to the affected individuals and their families
and may provide them with increased reproductive choice, for
example, by enabling preimplantation diagnosis, non-invasive
prenatal testing or prenatal diagnosis.

Author affiliations

1Normandie Univ, INUROUEN, INSERM U1245, Rouen University Hospital,
Dipartement de Pathology, Normandy Centre for Genomic and Personalized Medicine,
Rouen, France
2Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195,
Université Paris Saclay, Le Kremlin-Bicêtre, France
3Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a
Carattere Scientifico e Sezione di Medicina Genomica, Dipartimento di Scienze
della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
4Univ. Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, Grenoble, France,
Department of Medical Genetics, Le Mans Hospital, Le Mans, France
5Laboratoire Diagnostic Génétique, CHRU, Strasbourg; Institut de Génétique et
de Biologie Moléculaire et Cellulaire (IGBMC), INserm U964, CNRS UMR 7104,
Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg,
Illkirch, France
6Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
7Section de Biochimie Métabolique et Centre de Génétique, APHP, Sorbonne
Université, GH Pitié-Salpêtrière; Centre of Research in Myology, Sorbonne University,
UMRS 974, Paris, France
8Département de Génétique, Assistance publique-Hôpitaux de Paris (AP-HP), Hopital
Robert Debré, Paris, France
9Unité d’Embryofetopathologie, Service d’Histologie-Embryologie-Cytogénétique,
Hôpital Necker-Enfants Malades, APHP, Paris, France
10Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes; Institut
du Thorax, INserm, CNRS, Université de Nantes, Nantes, France
11UF de Génétique Clinique et Centre de Référence Maladies Rares des Anomalies
du Développement et Syndromes Malformatifs, APHP, Sorbonne Université, Hôpital
Armand Trousseau, Paris, France
12Laboratoire de Génétique moléculaire, Pharmacogénétique et Hormonologie,
Hôpital Bicêtre, APHP Université Paris Saclay, Le Kremlin-Bicêtre; Inserm UMR 5
1185, Faculté de médecine Paris Saclay, Université Paris Saclay, Le Kremlin-Bicêtre,
France
13Département de Génétique, APHP Sorbonne Université, Hôpital Pitié-Salpêtrière et
Trousseau, PARIS, France
14Unité de Génétique Clinique, Hôpital Necker-Enfants Malades, Paris, France
15Unité de Génétique Clinique, Centre Hospitalier Intercommunal de Créteil, Créteil, France
16Department of Pediatric Neurology, APHP-Bicêtre Hospital, Le Kremlin-Bicêtre, France
17Service d’Histologie, Embryologie, et Cytogénétique, Hôpital Jean Verdier, APHP,
Bondy, France

7

J Med Genet, first published as 10.1136/jmedgenet-2020-107595 on 5 April 2021. Downloaded from http://jmg.bmj.com/ on June 23, 2021 by guest. Protected by copyright.
Developmental defects

involvements in the construction and development of the neuromuscular system and contributed to writing the manuscript. The authors contribute to the recruitment of patients or performed genomics analyses.

Funding
This work was supported by a grant from the French Ministry of Health (PHRC 2010, AOM10181), the Association Française contre les Myopathies (AM, DA1891), the Agence de Biomédecine (2016), the Alliance Arthrogrypose and the Institut National de la Santé et de la Recherche Médicale (Inserm) to JM. Several authors of the manuscript are members of the European Reference Network for Developmental Anomalies and Intellectual Disability (ERN-ITHACA).

Competing interests
None declared.

Patient consent for publication
Not required.

Provenance and peer review
Not commissioned; externally peer reviewed.

Data availability statement
All data relevant to the study are included in the article or uploaded as supplementary information. All data relevant to the study are included.

Supplemental material
This content has been supplied by the author(s). It has not been vetted by BML Publishing Group Limited (BML) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BML. BML disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BML does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Laurence Faivre http://orcid.org/0000-0001-9770-444X
Elise Boucher http://orcid.org/0000-0002-8416-1431
Nicoleta Rosta http://orcid.org/0000-0001-8640-5532
Judith Melki http://orcid.org/0000-0002-9125-3171

REFERENCES

