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Figure 1  Pedigree and bioinformatics analysis. Affected members are indicated with filled symbols; unaffected relatives are indicated by open symbols; 
heterozygous carriers are indicated with a dot in the middle of the symbol. Arrows indicate the proband. Numbers are allotted to the family members whose 
DNA samples were used in this study; asterisks are marked on those members whose DNA was used for the whole-exome sequencing. Panel A: Sanger 
sequencing confirmed that in family P0001, the proband's unaffected parents (III-1 and III-2) and two mothered sisters (IV-1 and IV-3) are heterozygous 
carriers of the SYCP2L variant c.150_151del, whereas the proband (IV-2) is homozygous. In family P0005, the affected woman (IV-2) is homozygous for the 
missense SYCP2L variant c.999A>G; however, her parents (III-1 and III-2) and sister (IV-3) are heterozygous. Panel B: isoleucine at position 333 is highly 
conserved in different animal species from Xenopus tropicalis to Homo sapiens . Panel C: the molecular structures of the wild-type and mutant SYCP2L 
proteins in the N-terminal region were modelled using SWISS-MODEL software, which revealed that the frameshift variant (c.150_151del) causes the 
formation of a truncated protein and p.Ile333Met variant (c.999A>G) changes the shape of the protein at residues 88–95 (purple dashed box) and residues 
205–207 (blue dashed box). Additionally, a redundant hydrogen bond was formed between Asp334 and Ala311 when Ile333 was substituted by Met.
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Figure 2  Human SYCP2L expression and in vitro functional analysis. Panel A: human SYCP2L is expressed in the testis, ovary and oocytes (GV, MI and 
MII) of humans. Panel B: western blot analysis showing stable expression of the missense variant but no detectable truncated protein in Chinese hamster 
ovary (CHO) cells after transfection. Panel C: immunofluorescence analysis demonstrating expression of both constructs. The WT SYCP2L localised to the 
centromeres; however, the truncated SYCP2L and missense mutant SYCP2L (p.Ile333Met) displayed cytoplasmic mislocalisation and were not specifically 
localised to the centromeres, respectively. EV, empty vector (without SYCP2L); GV, germinal vesicle oocytes; MI, metaphase I oocytes; MII, metaphase II 
oocytes; mutant 1, c.150_151del of SYCP2L (p.Ser52Profs*7); mutant 2, c.999A>G (p.Ile333Met) of SYCP2L; WT, wild-type SYCP2L.

The SC is required to promote synapsis and recombination 
during meiosis; thus, mice without SCs exhibit infertility.13 14 
SYCP2L localises to the SC lateral elements in late diplotene 
oocytes.10 Female Sycp2l-KO mice presented with subfertility.10 
Recent genome-wide association studies reported that SNPs of 
SYCP2L (c.337–756G>A; rs2153157) may be associated with 
age at menarche and natural menopause in East Asian women.15 
We identified two homozygous SYCP2L variants in two patients 
with POI presenting with secondary amenorrhoea or oligomen-
orrhoea and low AMH levels. The clinical features observed in 
our patients were similar to the phenotypes of Sycp2l-KO mice, 
indirectly evidencing that SYCP2L is involved in meiotic synapsis, 
recombination and regulating ovarian function in humans.

SYCP2L is a sequence homologue of the SC protein SYCP2, 
with their N-terminals (amino acids 27–406) exhibiting 41% 
identity and showing expression at the nuclear SC in oocytes 
beginning in the late diplotene stage, as well as localisation to 
centromeres in late diplotene stage oocytes.10 In vitro, ectopically 
expressed human wild-type SYCP2L localised to centromeres in 
transfected somatic cells, whereas the human truncated SYCP2L 
mutants were not specifically localised to the centromeres but 

distributed diffusely throughout the nucleus.10 In our study, the 
SYCP2L frameshift variant (c.150_151delAG) resulted in low 
expression of truncated protein in cells after transfection, likely 
due to its reduced stability. In vivo, it is likely the frameshift 
variant results in a remarkably reduced level of SYCP2L transcript 
due to nonsense-mediated decay, and a subsequent deficiency of 
SYCP2L protein in patient cells. Our experiments demonstrate 
that if residual transcript encodes truncated protein, it is likely 
unstable and/or has impaired function. The region in which the 
missense variant of family P0005 (c.999A>G, p.Ile333Met) is 
located and the amino acid itself are highly conserved, indicating 
that it might have an essential function. Furthermore, in vitro 
analysis showed that wild-type SYCP2L specifically localised to 
the centromeres, whereas the mutant SYCP2L proteins did not, 
suggesting that mutant SYCP2L proteins cause mislocalisation 
and ultimately altered function. Therefore, the two SYCP2L vari-
ants identified are deleterious and disease-associated variants.

In Sycp2l-KO mice, the mutant female mice completely lost 
Sycp2l function and its primordial follicles were progressively 
lost with increasing age, leading to subfertility.10 In our study, the 
patient from family P0001 developed secondary amenorrhoea 
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at age 30 years, whereas the patient from family P0005 expe-
rienced oligomenorrhoea and had a pregnancy at the age of 30 
years. The severity of clinical symptoms of the two patients can 
be explained by the fact that the frameshift variant in family 
P0001 was a complete loss-of-function variant, but the missense 
variant caused partial loss of SYCP2L function, as confirmed by 
in vitro analysis.

We showed that human SYCP2L was expressed in both the 
testis and ovaries, suggesting that SYCP2L deficiency might 
affect both male and female fertility. Since no males in our study 
were homozygous for the SYCP2L variant, the effect of SYCP2L 
variants on human male infertility remains unclear.

In conclusion, we identified two homozygous POI-causing 
SYCP2L variants in humans that could act as new molecular 
biomarkers for POI in clinical settings. Our findings improve the 
understanding of the genetic basis of female infertility.
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