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S6). For the controls, no KEGG pathway was enriched, and the 
only enriched GO terms were molecular function terms that are 
involved in mRNA and small RNA binding (online supplemen-
tary table S7).

In order to identify significant protein interaction networks 
that modulate disease risk encoded by disrupted genes identi-
fied from all of the patients with RE, we applied DAPPLE.36 
This tool extracted ‘seed genes’ from the 279 genes in the CNVs 
using the InWeb database of high-confidence protein–protein 
interactions. Ten had highly enriched connectivity (p<0.01 
corrected for multiple testing over random network genera-
tion): REG1A, CTNNA3, DLG2*, HIBCH, ABCC6, CTNNA2*, 
KLHL17, RPL9*, NEIL2* and NOC2L*. Five of these genes also 
show high expression in the brain, indicated with an asterisk. A 
further 26 genes (12 with high brain expression) had corrected 
p values<0.05. An IPA network formed using these 36 genes as 
input, but allowed to expand to 70 genes on network formation 
to identify interaction partners (figure 2) contained three hubs 
not found within the CNVs themselves. Two hubs, AKT1/2/3 
part of the mTOR pathway (mutated in focal cortical dysplasia38) 
and ERK1/2 (also known as MAP kinases 1 and 2), are important 
regulators of synaptic excitability involved in epilepsy in animal 
models and human disease.39 Six other genes within the network, 
not found in these RE CNVs, are also epilepsy candidates, indi-
cating the strength of this approach for finding disrupted gene 
pathways (figure 2).

Phenotypic correlates
We used two-tailed Fisher’s exact tests for comparison of propor-
tions to analyse the association between the presence of a risk 
factor or potential risk factor CNV, and either seizure frequency 
or need for multiple AEDs (table 3). Our results show that the 
presence of a risk factor or potential risk factor CNV is not asso-
ciated with high seizure number (>10 lifetime seizures), p=0.3, 
nor the need for multiple AEDs, p=0.07.

Discussion
From this large investigation of genome-wide CNV in children 
with RE, we identified both recurrent and rare heterogeneous 
CNVs that contain genes involved in synapse formation, neuronal 
excitability and synaptic plasticity, axon guidance and neuronal 
development. Four patients with RE carried CNVs that disrupted 
genes known to cause other epilepsies; KCTD7, ARHGEF4, 
ARHGEF15 and CACNA2D1, expanding the phenotypes asso-
ciated with these genes. One individual was also found with a 
breakpoint within the known risk factor   gene  GRIN2A.16–18 
These, and other pathogenic CNVs, were not associated with 
seizure number or AED use variables, suggesting that they do not 
generally result in more severe phenotypes.

The genetic model of RE remains complex: including our data, 
both exome sequencing and CNV analysis, has identified only 
a small amount of the overall genetic risk. The heterogeneous 
nature of RE is underpinned by our study, where only variation 
at Xp22.31 is recurrent. Out of the 30 rare CNVs identified in 
patients with RE by Dimassi, only two overlap with our larger 
cohort; we both identified one patient with a maternally inher-
ited deletion of part of UNC13C, and we identified a de novo 
deletion of the 16p13.11 hotspot, whereas Dimassi identified a 
maternally inherited duplication of the same region.26 A hetero-
geneous mixture of CNVs has also been identified in a cohort of 
patients with LKS and CSWS17, which form the severe end of 
the epilepsy-aphasia spectrum, with RE at the mild end. These 
CNVs, as here in RE, often contain genes associated with other 
neurodevelopmental disorders such as ASD and LI, especially 
cell adhesion proteins, strengthening the aetiological overlaps 
between these disorders.

We have identified both de novo and inherited CNVs, with 
several unaffected carrier parents, reflecting the incomplete 
penetrance that is common in the genetic epilepsies.23 Indeed, 
for other genetic variants associated with RE such as mutations in 
GRIN2A, GABRG2 and DEPDC5, as well as for 16p11.2 dupli-
cations, incomplete penetrance is commonly noted.16–20 27 This 
might partly be because mild phenotypes presenting in childhood 

Figure 1  Breakpoints of 5 cases with Xp22.31 hotspot CNVs in our rolandic epilepsy (RE) case series, 2 cases with RE and Xp22.31 CNVs from the 
literature and 19 further cases with epilepsy or seizures form the literature. Individual IDs or publication references are shown to the left and references 
are in online supplementary table 3. Blue lines indicate duplications and red lines deletions. Gene positions are shown above the CNVs. Positions of 
segmental duplication sequence (locus control regions) are shown in the middle of the figure with grey bars. From http://genome.ucsc.edu/, hg19 
assembly. UCSC, University of California, Santa Cruz.
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in earlier generations, such as a single seizure or early difficul-
ties with speech and language may have been forgotten and not 
reported. In some of these families it is likely that additional, and 
as yet largely unknown, genetic factors contribute to the risk of 
developing RE. Indeed, two genetic ‘hits’ are not an uncommon 
observation in RE. In our study, we identified four patients 
carrying two rare risk factor CNVs, Dimassi et al described 10/47 
patients with two rare CNVs26 and Reinthaler et al27 identified 
1 patient with RE carrying two hotspot CNVs and 1 family with 
a de novo 16p11.2 duplication and an inherited DEPDC5 muta-
tion. In a further study, one patient with RE was found to carry 
a de novo GABRG2 mutation as well as an inherited GRIN2A 
mutation, and a second a paternally inherited 15q11.2 duplica-
tion and a maternally inherited GABRG2 mutation. Candidate 
gene or exome sequencing of the cohort described in this paper 
may therefore allow identification of further second hits.

One of the most striking findings of the study is an enrichment 
of CNV at the Xp22.31 locus in five patients with RE compared 

with previous reports.24 27 Contiguous gene syndromes have 
long been associated with microdeletions at Xp22.31, the 
phenotypic nature of which depends on the genes encom-
passed.40 Common phenotypes in those with CNV at Xp22.31 
are mental retardation, developmental delay and ichthyosis, 
with seizures and epilepsy less frequently reported. However, a 
recent paper has observed epilepsy in 24% of paediatric cases.24 
Locus control regions (long-range cis-regulatory elements) espe-
cially at the distal ends of VCX3A and VCX2 predispose this 
region to non-alleleic homologous recombination (figure 1).41 
Genes in the most commonly disrupted region of Xp22.31 
(figure  1) are VCX3A, which may contribute to mental retar-
dation42; HDHD1, a phosphatase involved in dephosphoryla-
tion of a modified RNA nucleotide43; STS, encoding a steroid 
sulfatase which hydrolyses neurosteroids that affect membrane 
potential and current conductance of the neuron, controlling 
network excitability and seizure susceptibility; VCX, which 
regulates mRNA translation and neurite outgrowth44; PNPLA4, 
which plays a key role in triglyceride hydrolysis and energy 
metabolism; and VCX2, which is not yet well characterised. 
Thus, there are several genes in the region which could poten-
tially contribute individually, or in an interacting model, to the 
seizure and neurodevelopmental profile of RE. The differing 
size and location of smaller CNVs identified in other publi-
cations that disrupt only one or two of the genes at Xp22.31 
indicates a minimum common region cannot be identified to 
account for the seizure phenotype, and other factors may also 
be required. Therefore, while a definitive molecular aetiology 
cannot be provided at this stage, the addition of five cases with 
RE expands on the seizure phenotypes associated with the 
Xp22.31 region, especially in Sardinian patients.

Figure 2  Network created by Ingenuity Pathway Analysis using the top 36 most highly connected genes disrupted by rolandic epilepsy (RE) CNVs as 
assessed by the Disease Association Protein-Protein Link Evaluator.36 Orange indicates a gene within a CNV, pink a hub gene, green an epilepsy-associated 
gene not found within a CNV and white are genes added by Ingenuity Pathway Analysis during network generation due to direct physical or indirect (eg, via 
activation) interactions with the input list.

Table 3  Numbers of patients with rolandic epilepsy within different 
seizure and antiepileptic drug (AED) categories

Patients with no 
risk/potential 
risk factor 
CNVs (n)

Patients with risk 
or potential risk 
factor CNVs (n) Total P values

<10 lifetime seizures 97 14 111 0.3

>10 lifetime seizures 52 12 64

0–1 AED 108 14 122 0.07

≥2 AEDs 43 13 56

(Eleven patients are missing seizure frequency and eight missing AED data).
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It is of note that we did not observe any duplications at the 
16p11.2 locus previously reported in around 1% of patients with 
RE26 27 (although the two patients reported in ref.26 had atypical 
RE). However, only one Xp22.31 duplication was reported in 
these two previous cohorts. This could indicate that the differing 
genetic backgrounds of the participants may play a role in the 
contrasting enrichment patterns. The three ‘typical breakpoint’ 
deletion patients at Xp22.31 described here are unrelated 
Sardinians. Sardinia is more isolated genetically than other 
parts of the Mediterranean, and may constitute a pre-Indo-Eu-
ropean population. However, there is also substantial heteroge-
neity within Sardinia itself due to its internal geography. The 
population of southern Sardinia appears to cluster somewhat 
with European populations with regard to allele distributions, 
whereas that of northern Sardinia is highly differentiated and 
determined by contributions of several ethnic groups, potentially 
including northern African and Middle Eastern origins.45 Thus 
our work highlights the importance of studying populations with 
different genetic backgrounds to fully identify the risk factors in 
oligogenic disorders such as RE. We also did not find deletions at 
15q13.3 or 15q11.2 and only one deletion at 16p13.11. These 
hotspot rearrangements have been associated with genetic gener-
alised epilepsies (GGEs), but not with genetic focal epilepsies, a 
distinction that is further strengthened here.22 46 47

Network analysis of the RE CNV genes identified several inter-
esting pathways that may indicate new risk factors (cholinergic 
synapse, guanine exchange factors) and give further strength 
to those already implicated (mTOR pathway, MAP kinases). 
Acetylcholine (ACh) acts as a neuromodulator within the brain, 
causing changes in neuronal excitability and synaptic plasticity, 
altering release of neurotransmitters and coordinating the firing 
of groups of neurons.48 The enrichment for brain expressed 
genes within cholinergic synapses introduces the regulation of 
ACh signalling as a potential new pathogenic pathway. Indeed, 
fluctuating levels of ACh during different sleep states correlate 
with periods of increased seizure susceptibility.49 Alterations to 
both presynaptic and postsynaptic responses to ACh, as seen 
here, may influence network excitability at these critical time 
points during sleep in patients with RE. This theory will now 
require further work in both cellular and animal models, and 
correlations with patient sleep EEG for confirmation.

Genes with high brain expression and those that stimulate the 
exchange of GDP for GTP, guanine nucleotide exchange factors, 
(GEFs), to activate GTPases, were also significantly enriched 
in European cases. GEFs regulate many aspects of cytoskel-
etal organisation, such as the morphogenesis and plasticity of 
dendritic spines and the induction of long-term potentiation, as 
well as vesicle transport and the regulation of excitatory synapse 
development. Indeed, GEFs have already been implicated in 
learning disability with epilepsy50 and shown to have function-al-
tering mutations in epileptic encephalopathy,51 52 indicating their 
potential importance as an avenue to explore in RE causality.

We were limited in our study by the low number of matched 
controls from the Kerala region, which meant we were not able 
to carry out a case–control analysis for this cohort. However, we 
have reported the CNVs descriptively if they were not present 
in the matched controls or other databases. Another limitation 
is that we did not have parental DNA for many of the RE cases 
to assess CNV inheritance. This would have aided in the puta-
tive assignment of pathogenicity, as those that arise de novo, or 
segregate with affectedness, would more likely predispose to the 
epilepsy.

In summary, we show that rare CNVs may play a pathogenic 
role in a significant proportion of children with RE, although 

the model of genetic risk still requires elucidation. Network 
analysis of genes with high brain expression from this ethnically 
diverse cohort suggests the involvement of new molecular path-
ways in rolandic epilepsy. The prevalence and nature of recur-
rent CNVs in RE can differ by population, but also clearly differ 
from those involved in GGEs. Aside from a few rare monogenic 
cases, it is likely that the majority of RE is explained by interac-
tions between sequence and CNV, and this hypothesis could be 
addressed in future large-scale studies.
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