Simple Anonychia
Further Evidence for Autosomal Recessive Inheritance

MOHSEN MAHLOUDJI and M. AMIDI

From the Departments of Neuropsychiatry and Medicine, Pahlavi University School of Medicine and Nemazee Hospital, Shiraz, Iran

Complete or partial absence of nails is a feature of a number of familial disorders. There may be additional anomalies such as absence of patella, ectrodactyly (Lees et al, 1957), minor deformities of the fingers (Strandskov, 1939), and lymphoedema (Maisels, 1966), or the defect might be confined to the nails—simple anonychia—(Charteris, 1918; Hobbs, 1935; Timerman, Museteanu, and Simionescu, 1969). The majority of these anomalies appear to be manifest in the heterozygous state and there is good evidence, at least in some cases, that the mutations are at different loci (Lees et al, 1957).

In 1933, Cockayne reviewed the literature and suggested that there might be a recessively inherited variety of simple anonychia. More recently, Littman and Levin (1964) have put forward the same suggestion but this mode of inheritance has not yet gained general acceptance (McKusick, 1968). The purpose of the present communication is to report a family in which the distribution of the affected members gives strong support in favour of autosomal recessive inheritance.

Case Reports

Case 1. The proband was a 30-year-old woman who had come to hospital for a 'check-up'. She had minor complaints such as discomfort over the precordium and general aches and pains. Complete absence of all nails (Figs. 1 and 2) had been noticed since birth but did not bother her. Physical examination and a number of laboratory tests revealed no other abnormality and she was reassured and sent home without medication. In particular her hair, teeth, and skeletal system appeared to be normal.

Case 2 was a 60-year-old woman (III.4) who was persuaded to attend the clinic by case 1. She did so reluctantly and refused even simple photography. She too had no nails on her fingers or toes and no other abnormality.

Received 30 March 1971.
and an older sister of case 2 (III.2). Apparently every member of the group was familiar with the syndrome and looked for it at birth. They admitted that in every instance the absence of nails on the fingers as well as the toes was complete. The sibs of case 1 were all alive but none had married yet. She herself had 4 normal children. According to case 2 and her sister, the affected brother (III.3) was still alive but their uncle (II.5) was dead. To their knowledge he was the first member to show the trait.

![Pedigree of the family.](image)

Familial aggregation in the absence of abnormality in the parents has been reported only 3 times previously. Jacob quoted by Heidingsfeld (1913) and Cockayne (1933) described a Russian girl with almost total anonychia who had 2 similarly affected sibs; the teeth in the only patient examined were abnormal. From Britain, O’Neill (1916) reported complete absence of all nails in 3 sibs. Finally, Littman and Levin (1964) described partial anonychia of the fingers but normal toes in a girl of German extraction who was said to have a similarly affected brother.

Consanguineous marriages are very common in Iran particularly in villages and small towns. A recent survey carried out in a number of villages in the vicinity of Shiraz (Mahloudji and Livingston, in press) showed that over 20% of all marriages were between second cousins or closer relatives. In our experience information beyond second cousins is not entirely reliable particularly when the couple are related through more than one line as was the present family. The informants had no doubt that they were all related as shown in the pedigree. The details of how they all descended from a common ancestor were not known accurately and therefore have been indicated by a dotted line.

Discussion

The distribution of the affected in this kindred (Fig. 3) is typical of an autosomal recessive trait. The frequent consanguinity, the absence of the condition in the parents, and the mixed sexes of the affected members all strongly suggest this mode of inheritance. In no instance has the trait been observed in any offspring of the affected.

Recessively inherited simple anonychia appears to be extremely rare. A number of isolated cases are on record but as Cockayne pointed out, these may be examples of new dominant mutations. Cases falling in the category of recessively inherited simple anonychia have been reported in individuals from Russia, Great Britain, America, Holland, and now Iran. In all except the cases of Littman and Levin (1964) the anonychia appears to have been total; the fingers as well as toes being affected. It is still not possible to say if all these cases are due to mutations at the same loci or that there is further heterogeneity.

Summary

A family is described in which several members suffered from total absence of all nails on the fingers...
and toes. The normal parents, the mixed sexes of
the affected individuals, and the frequent consangu-
inity are strongly in favour of autosomal recessive
inheritance. The literature is reviewed and it is
suggested that there is an extremely rare variety of
simple anonychia that is recessively inherited.

REFERENCES
Charteris, F. (1918). Case of partial hereditary anonychia.
Cockayne, E. A. (1933). Inherited Abnormalities of the Skin and its
Heidingsfeld, M. L. (1913). Congenital absence of finger and toe
nails (anonychia congenitalis totalis). Transactions of the 17th
International Congress of Medicine, London, Section 13, Part 2,
pp. 93–96.
Journal of Medical Sciences, 190, 200–206.
Lees, D. H., Lawler, S. D., Renwick, J. H., and Thoday, J. M.
(1957). Anonychia with ectrodactyly: clinical and linkage data
Annals of Human Genetics, 22, 69–79.
Littman, A. and Levin, S. (1964). Anonychia as a recessive auto-
somal trait in man. Journal of Investigative Dermatology, 42, 177–
178.
Listengarten, A. M. (1931). Ein Fall von Anonychia Totalis Con-
genita. Dermatologische Wochenschrift, 92, 691–695.
McKusick, V. A. (1968). Mendelian Inheritance in Man. Cata-
logs of Autosomal Dominant, Autosomal Recessive, and X-linked
2, 979–980.
Dominant anonychia and onychodystrophy. Journal of Medical
Genetics, 6, 105–106.
totalis van vingers en tenen. Nederlands Tijdschrift voor Genes-
kunde, 113, 395–397.