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of which 32 were novel. Homozygous pathogenic variants were 
observed in 68 patients, while 14 had compound heterozygous 
mutations. We found that 14.7% of the FANCA pathogenic 
variants were deletions. There were 14 different deletions in 20 
patients. As reported in a previous Indian population study,22 
we also observed a high frequency of FANCA exon 27 deletion 
(3.6%) in our patients (online supplemental figure S3B, table 1). 
FANCC, the second frequently mutated gene with a frequency 
of 10%–15% in other populations,20 22 was rare (1.5%) in our 
patients. The frequency of FANCG pathogenic variants was 
comparable with other populations (11.7% in this study vs 
9%–12% in other populations).2 36 Pathogenic variants in rare 
FA genes include those in FANCT/UBE2T in three patients, 
FANCI in one patient, FANCJ/BRIP1 in two patients, FANCF in 
two patients and FANCD1/BRCA2 in one patient (online supple-
mental table S3, figure 2).

Although pathogenic variants in FANCL are rare, WES 
revealed 27 (19.8%) patients with FANCL pathogenic variants 
in our patients (online supplemental table S3). A synonymous 
splicing variant c.1092G>A;p.K364=in the FANCL gene was 
found in a homozygous state in 26 (19.1%) patients. Sanger 
sequence analysis of the PCR-amplified FANCL cDNA from 
a patient with this variant confirmed skipping of exon 13, as 
reported previously21(online supplemental figure S5A–C). 
Lentiviral transduction of wild type FANCL cDNA restored 
FANCD2-Ub in the fibroblasts of a patient with this pathogenic 
variant (online supplemental figure S5D). All the patients with 
this pathogenic variant were from South Indian states (12 from 
Andhra Pradesh, 9 from Kerala, 5 from Tamil Nadu and 1 from 
Karnataka) (online supplemental figure S1). Although this patho-
genic variant was reported previously in 12 Indian patients with 
FA,21 our study, with representative samples from all over the 
country, revealed its frequency among the Indian patients with 

FA with better accuracy. We identified another FANCL patho-
genic variant: a nonsense variant c.997C>T; p.Gln333* found 
in the compound heterozygous state with FANCL c.1092G>A;p.
K364=in another patient (online supplemental table S3). Other 
highly frequent pathogenic variants included c.2786A>C (n=5), 
c.1761–2A>C (n=5) in FANCG and c.3066+1G>T (n=4), 
c.319delG (n=4) and c.826+2T>C (n=4) in FANCA (online 
supplemental table S3).

Determination of pathogenicity of missense variants
We identified 24 missense variants in the 142 patients with FA 
that we genotyped. The pathogenic effect of these variants was 
assessed using ACMG guidelines,37 ClinVar database37 38 and 
VarSome variant discovery tool,39 which use several pathoge-
nicity prediction methods to classify the variants as pathogenic, 
likely pathogenic or VUS. We identified seven pathogenic vari-
ants by ACMG guidelines, eight by ClinVar and six by Varsome 
(table 2). We also analysed the missense variants using the evolu-
tionary model of variant effect (EVE)40 tool (https://evemodel.​
org/) for the pathogenicity prediction, which showed that out of 
the 24 missense variants in our patients, 20 were pathogenic and 
2 were VUS and 2 of them did not have any EVE scores (table 2).

Complementation analysis by lentiviral-mediated gene 
transfer of wild type cDNA into FA cells and correction of the 
cellular phenotypes is a feasible method for confirming the 
pathogenicity of the variants.15 After antibiotic selection of the 
fibroblasts transduced with lentiviral vectors encoding wild type 
cDNAs, the cells were treated with MMC and were analysed for 
their FANCD2-Ub status. We first validated complementation 
analysis in the fibroblasts of 13 patients with pathogenic null 
variants in the FA upstream pathway genes (online supplemental 
table S7) and observed restoration of FANCD2-Ub in all of 

Figure 3  Lentiviral complementation analysis. (A) Lentiviral constitutive expression vectors for complementation analysis of FANCA, FANCG and FANCC 
and doxycycline-inducible expression vectors for FANCF, FANCI and FANCL. (B) FANCD2 western blot results after complementation of FANCA, FANCG, 
FANCC, FANCF, FANCI and FANCL genes in the fibroblasts with mutations in these genes. *Leaky expression vector that exhibits transgene expression in 
the absence of doxycycline (DOX). FA-03, FA-24, FA-26, FA-38, FA-527, FA-543, FA-30, FA-03/19 are patient IDs. CMV, cytomegalovirus; hPGK, human 
polyglycerate kinase promoter; LTR, long terminal repeat; PuroR, puromycin resistance gene; rtTA, reverse tetracycline-controlled transactivator; TRE, 
tetracycline response element; T2A, self-cleaving 2A peptide; WPRE, woodchuck hepatitis virus post-transcriptional regulatory element.
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them (figure 3, online supplemental table S7). Subsequently, we 
performed complementation analysis in seven patients with VUS 
and likely pathogenic variants as determined by the ACMG clas-
sification in homozygous or compound heterozygous states for 
whom fibroblasts were available. These included four FANCA, 1 
FANCG, 1 FANCC and 1 FANCF variants (online supplemental 
table S7). All these patients showed restoration of FANCD2-Ub 
after complementation.

A robust molecular diagnosis strategy designed for FA
Our study showed that 57.4% of the patients had SNVs in 
FANCA and FANCG genes. Therefore, we developed a LA-NGS 
method to detect pathogenic variants in these genes. We 
amplified the FANCA gene as six LAs and FANCG as one LA 
by LA-PCR (online supplemental Figure S6A,B), and the PCR 
products were pooled in a single tube, and NGS and subsequent 
bioinformatics analysis were performed. The robustness of this 
method for detecting SNVs was confirmed using DNA samples 
from 24 patients with known SNVs in FANCA and FANCG 
(online supplemental table S5). This method is cost-effective 
and faster than the current molecular diagnostic strategies and 
involves less bioinformatics analysis than exome sequencing.

As 19.1% of the patients with FA have FANCL c.1092G>A;p.
K364=pathogenic variant, Sanger sequencing to detect this 
variant can be performed as the first test for genotyping the 
Indian patients with FA. MLPA can detect FANCA deletions, 
which constitute 14.7% of the overall pathogenic variants. The 
results from these two tests can be obtained in 48 hours. For 
those who are negative for the pathogenic variants by these two 
methods, LA-NGS can detect SNVs in the FANCA and FANCG 
genes, which constitute ~57% of the FA pathogenic variants. 
Thus, this algorithm can help in the molecular diagnosis of ~90% 
of the patients with FA in the Indian population (figure  4A). 
This diagnostic algorithm was tested in 27 new patients with FA 
with a median CBA score of 66.8 (0–115) and confirmed that it 
provides a faster and more cost-effective molecular diagnosis of 
FA in the Indian population (figure 4B).

DISCUSSION
An accurate laboratory diagnosis of FA is mandatory for the clin-
ical management of this disease. Although CBA is considered a 
‘gold standard’ test for FA, this test has several issues, including 
laborious standardisation and user variability in the scores. The 
comparison of CBA and FANCD2-Ub analysis performed in a 

Figure 4  Methodologies for the molecular diagnosis of Fanconi anaemia (FA) in the Indian population. (A) Algorithm for the molecular diagnosis of FA. 
(B) The new algorithm tested in 27 patients with FA. MLPA, multiplex ligation-dependent probe amplification; LA-NGS, long-amplicon next-generation 
sequencing.
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large number of patients with FA in this study confirmed that 
FANCD2-Ub analysis, which is currently not being used for diag-
nosis, is also suitable for FA diagnosis (online supplemental table 
S8). We found increased sensitivity of CBA scores in FA diag-
nosis when a cut-off of 15 (arrived at using the receiver oper-
ating characteristic curve (ROC) curve and Youden’s Index) was 
used. However, a randomised comparative analysis is required 
to confirm this cut-off. Among 16 patients with low CBA scores, 
12 were analysed for FANCD2-Ub analysis. Seven of these 12 
patients showed defective FANCD2-Ub (58.3%), and subse-
quent pathogenic variant analysis confirmed them to be FA 
cases. Defects in the downstream FA pathway genes, which do 
not affect FANCD2-Ub, are very rare (2%–6 %)4 20 in patients 
with FA, and we also found the downstream pathogenic variants 
in only ~2.2% of the Indian patients. Therefore, FANCD2-Ub 
analysis may be used as a reliable test for the diagnosis of FA. 
Spontaneous reversal of pathogenic variants occurs in the 
haematopoietic cells of 15%–25% of the patients with FA.41 
FANCD2-Ub analysis performed in both T cells and fibroblasts 
in 55 patients in this study identified only 3 (5.4%) mosaics, with 
FANCD2-Ub+ in T cells and FANCD2-Ub− in fibroblasts. The 
reduced incidence of mosaicism (<15%) observed in our cohort 
may be because the patients were referred from a haematology 
clinic after evaluating pancytopenia and other haematological 
and physical abnormalities.

Detection of defective genes and pathogenic variants is 
important for genetic counselling and the development of 
targeted prenatal genetic testing. Early molecular diagnosis is 
also essential for participation in gene therapy for FA.42 Although 
targeted gene panels have been developed for FA,20 43 44 WES 
allows the discovery of new genes associated with the diseases. 
There were very few reports on WES analysis of a limited number 
of patients with FA, with 15–25 patients.45 Recently, a compre-
hensive WES study in 68 European patients with FA identified 
pathogenic variants in 93.3% of patients.2 We performed a WES 
analysis of the largest number of patients with FA and identified 
pathogenic variants with 95.7% genotyping efficiency. In the six 
patients for whom only heterozygous variants were identified, 
gene expression and protein analysis may identify the probably 
missed pathogenic variants.

NGS has limitations in detecting CNVs. Therefore, robust 
bioinformatics methods are required to detect deletions. A 
recent study has applied a bioinformatics tool using custom 
scripts to identify the deletions in FA genes efficiently.2 We used 
ExomeDepth34 for CNV analysis and applied filters to discard 
the false positives to obtain 100% accuracy in detecting deletions 
in our patients. Our results confirmed that the improved bioin-
formatics could efficiently detect CNVs. As reported earlier in 
other populations,46–48 we also found that FANCA deletions are 
very common (14.7%) in Indian patients with FA. The combined 
analysis of SNVs and CNVs identified the disease-associated 
genotypes in ~95% of the patients. Such a high pathogenic 
variant detection rate in FA was reported previously by Bogliolo 
et al,2 which also analysed both SNVs and CNVs.

FANCA has high genetic heterogeneity and is the most often 
mutated FA gene, with frequencies ranging from 60% to 80% 
in different populations.2 20 36 However, we found that FANCA 
(60.2%), FANCL (19.8%) and FANCG (11.7%) are the most 
common mutated genes in our cohort of patients with FA. Even 
though we identified a large number of patients (~20%) with 
homozygous FANCL c.1092G>A;p.K364=, they presented 
diverse phenotypes. More than 83.2% of the patients were 
homozygous for pathogenic variants in the FA genes due to this 
population’s high consanguinity rate. A large number of patients, 

65 (45%), were born from consanguineous marriages. We found 
only 93 variants in the 142 cases analysed by NGS due to high 
homozygosity and a few recurrent pathogenic variants. There 
were 19 recurrent variants found in more than one patient; their 
frequencies ranged from 1.3% to 17.5%.

We found pathogenic variants in only nine FA genes, FANCA, 
FANCG, FANCC, FANCL, FANCF, FANCT, FANCI, FANCD1 
and FANCJ. These genes could be prioritised for designing the 
FA genotyping panel and the bioinformatics analysis of Indian 
patients. We found that Sanger sequencing to detect the FANCL 
pathogenic variant and MLPA to detect FANCA deletions could 
diagnose 33.8% of FA cases. We also developed a faster and 
cost-effective LA-NGS strategy to detect point pathogenic vari-
ants in FANCA and FANCG genes, constituting 57.4% of the 
genotypes in Indian patients with FA. The presence of a FANCL 
founder variant and the high frequency of FANCA and FANCG 
pathogenic variants helped establish a new, faster, cost-effective 
molecular diagnosis strategy for Indian patients with FA that 
could diagnose ~90% of the patients with FA. Altogether, the 
algorithm established would expedite the FA diagnosis and be a 
cost-effective alternative compared with WES for FA diagnosis.
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