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ABSTRACT
Pathogenic germline variants in the protection of 
telomeres 1 gene (POT1) have been associated with 
predisposition to a range of tumour types, including 
melanoma, glioma, leukaemia and cardiac angiosarcoma. 
We sequenced all coding exons of the POT1 gene in 
2928 European- descent melanoma cases and 3298 
controls, identifying 43 protein- changing genetic 
variants. We performed POT1- telomere binding assays 
for all missense and stop- gained variants, finding nine 
variants that impair or disrupt protein–telomere complex 
formation, and we further define the role of variants in 
the regulation of telomere length and complex formation 
through molecular dynamics simulations. We determine 
that POT1 coding variants are a minor contributor to 
melanoma burden in the general population, with only 
about 0.5% of melanoma cases carrying germline 
pathogenic variants in this gene, but should be screened 
in individuals with a strong family history of melanoma 
and/or multiple malignancies.

Since the discovery of pathogenic alleles of 
CDKN2A 25 years ago,1 a number of other variants 
that increase melanoma risk have been uncovered 
by genome- wide association studies (GWAS)2 and 
the genomic analysis of melanoma- predisposed 
families. These variants affect biological pathways 
related to pigmentation (such as alleles of MC1R, 
the ‘red hair’ gene), naevus count, including genetic 
variation adjacent to PLA2G6, cell cycle and senes-
cence, comprising changes in CDKN2A and CDK4, 
and telomere regulation.3 Of note, pathogenic vari-
ants in the protection of telomeres 1 gene (POT1) 
have been associated with melanoma, as well as 
other types of cancer such as glioma,4 leukaemia5 
and lymphoma.6 As such, pathogenic germline 
POT1 variants have recently been recognised as 
defining a novel tumour predisposition syndrome.7 
Genetic variation proximal to POT1 has also been 
found to be associated with melanoma in recent 
large- scale GWAS studies.8

POT1 encodes a single- stranded DNA (ssDNA)–
binding protein that forms part of the shelterin 
complex, a group of proteins that have functions 
in telomere protection by allowing cells to distin-
guish the ends of chromosomes from sites of DNA 
damage and also function in regulating telomere 

length.9 In recent years, sequencing of melanoma- 
predisposed individuals has revealed a number of 
pathogenic alleles of POT1 which affect the ability 
of POT1 to bind to ssDNA and therefore lead to 
longer and abnormal telomeres.10–12 This, in turn, 
may promote carcinogenesis through the accumula-
tion of damage at chromosome ends and a delay in 
the onset of cell senescence. Further, a recent study 
has identified POT1 variants that lead to shorter 
telomeres,13 emphasising the need to identify and 
catalogue the consequences of these genetic changes 
in carriers.

As estimates have suggested that POT1 may 
be the second major high- penetrance melanoma 
susceptibility gene after CDKN2A, being causal 
of disease predisposition in 2%–4% of CDKN2A/
CDK4- negative families,10 14 it has been included 
in multiple panels for genetic testing of melanoma 
families. As such, and to inform genetic coun-
selling, there is a need to identify which genetic 
variants abrogate POT1 function leading to telo-
mere dysregulation, as well as to determine their 
frequency in population- ascertained melanoma 
cases. In this study, we performed experimental and 
bioinformatic analyses to identify germline variants 
that disrupt the POT1–ssDNA complex and lead to 
telomere length alterations.

This study included 2928 melanoma cases and 
3298 controls, making up a total of 6226 European- 
descent (British) individuals from two distinct 
melanoma cohorts plus a population cohort (online 
supplemental methods). We sequenced all POT1 
coding exons on the MiSeq platform (reference 
transcript: ENST00000357628). After alignment, 
variant calling and quality filtering, we identified 43 
protein- altering variants in POT1 by Fluidigm PCR- 
based amplicon sequencing and validated them by 
target capture with Agilent SureSelect probes and 
Illumina sequencing (online supplemental methods, 
online supplemental figure 1, online supplemental 
table 1, online supplemental file 6). Of these, 
19 have not been reported in the gnomAD 2.1 
dataset.15

To assess whether the detected variants impair 
telomere regulation, we analysed the ability of 
in vitro- translated POT1 proteins containing all 
missense and stop- gained variants (38/43 vari-
ants in total (online supplemental table 1) to 
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bind to a telomere- like oligo via electrophoretic mobility shift 
assay (EMSA) experiments (online supplemental methods)). 
Our results indicate that four variants completely disrupted 
POT1–ssDNA complex formation (p.Cys59Tyr, p.Arg137His, 
p.Leu259Ter and p.Arg273Leu), whereas a further five appear to 
reduce the affinity of the interaction (p.Lys39Asn, p.Lys85Thr, 
p.Ser99Pro, p.Arg117His and p.Asp224Asn) (figure 1A; online 
supplemental figure 2). Of these, six had not been reported in 
the gnomAD 2.1 dataset, and, of note, as expected, all variants 
that altered POT1- ssDNA binding fall within the N- terminal OB 
domains.

Variants were classified in three groups according to their 
pathogenicity: Group 1 variants were confirmed by EMSA to 

disrupt the POT1–ssDNA complex or were those strongly 
suspected as pathogenic (frameshift and splice acceptor vari-
ants). We included variants with reduced binding in this cate-
gory due to their high conservation across species (online 
supplemental figure 3) and prior evidence that they may be 
pathogenic (p.Arg117His16 and p.Asp224Asn11). In total, 14/43 
variants were classified in this group, with 10 of these falling in 
the OB domains (figure 2; online supplemental tables 1 and 2). 
Group 2 variants were those predicted deleterious and probably 
damaging by both the SIFT and PolyPhen algorithms and did 
not disrupt POT1–ssDNA binding (4/43 variants). These vari-
ants may impair the function of the protein in other ways. The 
remaining variants (25) were classified into Group 3.

Figure 1 Biological consequences of protection of telomeres 1 gene (POT1) variants. (A) Electrophoretic mobility shift assays (EMSAs) are shown testing 
the ability of in vitro- translated mutant POT1 proteins to bind a telomere- like oligo (TTAGGGTTAGGGTTAGGG). EV, empty vector; WT, wild- type protein. (B) 
Telomere length of carriers of pathogenic POT1 variants is depicted over a telomere length distribution of melanoma cases and controls with no pathogenic 
POT1 variants. The distribution of the means of residuals from the linear model distribution of telomere lengths for individuals with no POT1 variants is 
depicted in beige. The mean of the adjusted telomere lengths for individuals with POT1 variants is shown on top according to the variant type (no binding, 
reduced binding or binding according to EMSA and splice variants). Melanoma cases are shown in squares and controls in circles. Each variant is shown in 
a different colour. For the ‘Binding’ row, the variants from left to right are p.Pro371Leu, p.Ile624Met, p.Asn611Ser, p.Lys427Thr, p.Asp396His, p.Val629Leu, 
p.His393Arg, p.Leu151Val, p.Asn75Ser, p.His393Arg, p.Lys581Arg, p.Glu481Gly, p.Ser377Phe, p.Asn614Ser, p.Tyr419Cys/p.Gly404Val, p.Asp396Asn, 
p.Ile78Val, p.Val519Ala, p.Thr522Ile, p.Ile114Met, p.Arg363Gln/p.Val391Ala, p.Lys427Arg, p.His437Arg, p.Val519Ile, p.His393Arg and p.Ala532Pro.
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The majority of cases and controls in this study did not carry a 
POT1 variant (94.1% cases, 95.1% controls), and the majority of 
those with a variant had only one variant. No person had more 
than two variants. In total, three persons had a Group 1 variant 
and a Group 3 variant (two cases, one control) while five persons 
had two Group 3 variants (three cases, two controls). Given the 
limited number of persons with two variants, each case and 
control is classified by their most severe mutation. For Group 
1, 15 cases (0.51%) carried a variant, while 8 (0.24%) controls 
did (p value=0.08, OR for carrying a Group 1 variant compared 
with no variant (OR)=2.11, 95% CI (0.89 to 5.00)). For Groups 
1+2 combined, 22 cases (0.75%) carried a variant, while 14 
controls (0.42%) did (p value 0.096, OR=1.78). Finally, for 
Group 3, 126 cases (4.3%) carried a variant as did 149 controls 
(4.6%) (two- tailed Fisher’s exact test, p value 0.66) indicating 
no evidence of increased risk associated with this variant class. 
Overall, then while about twice as many cases as controls carried 
predicted pathogenic variants in POT1, this difference was not 
conventionally statistically significant likely because of limited 
power even with a study this size. There were also no differences 
in age of onset, sex, family history or site of presentation by 
pathogenicity group when compared with those without one of 
the classified mutations (online supplemental tables 3−6).

We next sought to determine whether the variants we detected 
had any effect on telomere regulation. For this, we measured 
telomere length in POT1 variant carriers and non- carriers from 
the same populations (online supplemental methods). After stan-
dardising lengths by plate and adjusting them for cohort via a 
linear model (online supplemental table 7, online supplemental 
figure 4), we observed that only the individuals carrying the 
p.Lys39Asn (percentile 98 when compared with controls) and 
the p.Arg273Leu (percentile 99 when compared with controls) 
variants had telomeres that were substantially longer than the 
mean (figure 1B). We also observed that some individuals with 
splice variants or variants that showed reduced DNA binding 
also had telomeres on the longer side of the distribution (eg, 
Lys85Thr, percentile 91, p.Leu259Ter, percentile 90, one indi-
vidual carrying c.1164–1G>A, percentile 97) but others did not 
(eg, p.Ser99Pro, percentile 31, most individuals with variants 

in splice sites). Individuals with the p.Asp224Asn variant had 
telomere lengths scattered throughout the whole distribution 
in contrast to previous reports suggesting that these variants 
increase telomere length11 (figure 1B).

Because the p.Lys39Asn, p.Cys59Tyr and p.Asp224Asn 
variants are found in controls and show POT1–ssDNA 
complex disruption, we further investigated those using 
molecular dynamics simulations (online supplemental 
methods). Our results suggest that all three variants affect the 
dynamics of the system when compared with the wild- type 
(WT) structure, as evidenced by the first and second normal 
modes (online supplemental figure 5A–H, online supple-
mental movie). Existing protein structures for POT1 also 
imply that there are conformational differences between the 
POT1–ssDNA and POT1–ACD structures.17 18 As a result, the 
structural differences noted within the POT1 mutant proteins 
investigated here may affect shelterin complex formation, 
but further investigation is necessary. Additional analyses 
of root mean square deviation, root mean square fluctua-
tion, residue- wise correlations, secondary structure, energy 
decomposition analysis and hydrogen bond interactions are 
all consistent with the computational results reported herein 
(online supplemental figure 5I- L, 6–18, online supplemental 
tables 8- 12). MM- GBSA was used to assess the protein:DNA- 
binding affinities. We calculated a ΔΔH of −0.6 to –1.3, and 
21.6 kcal/mol for p.Lys39Asn, p.Asp224Asn and p.Cys59Tyr, 
respectively. These enthalpies are in agreement with the 
experimental binding pattern discussed above.

Even though POT1 seems to be the second major melanoma 
susceptibility gene, with 2%–4% of CDKN2A/CDK4- WT 
families carrying a pathogenic coding variant in this gene, its 
contribution to melanoma risk burden in the general popu-
lation is minor, with ~0.5% of cases carrying pathogenic 
variants. Telomere length calculations confirm known asso-
ciations of variants with longer telomeres (p.Arg273Leu,10 
p.Arg117His11 16) and found associations with other patho-
genic variants (p.Lys39Asn, p.Lys85Thr and confirmation 
of longer telomere length for p.Ala532Pro, percentile 93, a 
variant originally reported in Ref. 11), but for other variants 

Figure 2 Schematic diagram of Group 1 POT1 variants. Variants are shown on the primary protein structure with their consequence (in a coloured circle 
or triangle) and their presence (red square) or absence (empty square) in publicly available datasets (gnomAD exomes v2.1, dbSNP build 151 and COSMIC 
v86). The ClinVar track indicates the pathogenicity prediction in ClinVar release 20220804. The OB domains are shown in green. Variants in red font colour 
are found in cases, those in blue font colour are found in controls and those in black are found in both cases and controls. For details on numbers of cases 
and controls, see online supplemental table 1. Figure created with VCF/Plotein.22

 on A
pril 10, 2024 by guest. P

rotected by copyright.
http://jm

g.bm
j.com

/
J M

ed G
enet: first published as 10.1136/jm

g-2022-108776 on 20 D
ecem

ber 2022. D
ow

nloaded from
 

https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
https://dx.doi.org/10.1136/jmg-2022-108776
http://jmg.bmj.com/


695Simonin- Wilmer I, et al. J Med Genet 2023;60:692–696. doi:10.1136/jmg-2022-108776

Cancer genetics

the association with length was not clear (eg, all three carriers 
of c.1164–1G>A and six of p.Asp224Asn had telomere 
lengths scattered throughout the distribution). Although a 
prior study had shown slightly longer telomeres for carriers of 
p.Arg117His,11 the carrier melanoma case in this cohort had 
normal- length telomeres. This may reflect the many mecha-
nisms, including other genetic variants and lifestyle, by which 
telomere length can be affected or the assays used for telo-
mere analysis. Telomere length for some control individuals 
(without reported melanoma) with pathogenic variants (eg, 
p.Lys39Asn and both controls carrying p.Asp224Asn) also 
showed an increase in telomere length, which may portend an 
increased risk of tumourigenesis in these individuals or indi-
cate that other factors are necessary for melanoma genesis.

Although in this study we have attempted to identify patho-
genic POT1 variants through DNA- binding assays, the func-
tion of POT1 proteins with variants outside the OB domains 
may be compromised by other mechanisms. For example, 
another study concluded that the POT1 p.Ala532Pro variant 
shows impaired ACD binding, which may also lead to telo-
mere dysregulation.19 Therefore, further systematic experi-
ments are needed to address other POT1 functions, such as 
telomere fragility, to provide a more complete catalogue of 
variants that alter protein function and therefore that lead to 
cancer predisposition.

While the number of POT1 variant carriers in this study is 
too limited to draw strong conclusions, the lack of any statis-
tically significant difference in age of onset between variant 
carriers (54.7 years) and non- carriers (54.4 years) in the 
general population needs some consideration. By comparison 
and looking at another melanoma high- penetrance gene, in 
the Leeds Melanoma Cohort, CDKN2A variant carriers have 
an average age of onset of 50 years (based on data included 
in Ref. 20). The literature contains many examples of fami-
lies with particularly early ages of onset for melanoma; these 
extreme families likely represent the product of interactions 
of high penetrance variants (in genes such as CDKN2A and 
POT1) with contributing lower penetrance variants and risk- 
associated lifestyle behaviours. Therefore, the analysis of 
population- based samples provides a more complete descrip-
tion of the impact of high penetrance variants in the general 
population. A comparable scenario applies to breast cancer; 
recent analysis of the UK SEARCH study containing about 
12 700 breast cancer diagnosed under the age of 70 years 
showed an average age of onset of 54.5 years for women 
without a known variant in a high penetrance gene. Only 
BRCA1 and BRCA2 variant carriers had notably earlier ages 
of onset (46.7 and 50.6 years, respectively), while carriers of 
variants in rarer predisposing genes (CHEK2, PALB2, ATM, 
RAD51C) had average age of onset of between 51.1 years and 
58.2 years (A Antoniou, University of Cambridge, personal 
communication based on data in Ref. 21).
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