Supplemental Data of

ARF1-related disorder: phenotypic and molecular spectrum.

Jean-Madeleine de Sainte Agathe MD (1), Ben Pode-Shakked MD (2), Sophie Naudion MD (3), Vincent Michaud MD (3,4), Benoît Arveiler PharmD, PhD (3,4), Patricia Fergelot MD, PhD (3,4), Jean Delmas MD (5), Boris Keren MD, PhD (1), Céline Poisier MD (6), Fowzan S Alkuraya MD (7), Brahim Tabarki MD (8), Eric Bend PhD, FACMG (9), Kellie Davis MD, FRCP, FCCMG (10), E. Martina Bebin MD, MPA (11), Michelle L. Thompson PhD (12), Emily Bryant MS (13), Matias Wagner MD (14), Iris Hannibal MD (15), Jerica Lenberg MS, CGC (16), Martin Krenn MD, PhD (17), Kristen Wigby MD, FACMG (18), Jennifer R Friedman MD (19), Maria Iascone PhD (20), Anna Cereda MD (21), Térence Miao (22), Éric Le Guern MD, PhD (1), Emanuela Argilli PhD (23), Elliott H. Sherr MD, PhD (23), Oana Caluseriu MD (24), Timothy Tidwell PhD (25), Pinar Bayrak-Toydemir MD, PhD (26), Caroline Hagedorn PNP, MSN (27), Melanie Brugger MD (28), Katharina Vill MD (29), Francois-Dominique Morneau-Jacob MD (30), Wendy K. Chung MD, PhD (31), Kathryn N. Weaver MD (32), Joshua W. Owens MD (32), Ammar Husami (32), Bimal P. Chaudhari MD, MPH (33), Brandon S. Stone MD (34), Katie Burns MS, CGC (35), Rachel Li MD, MMS (36), Iris M de Lange (37), Margaux Biehler MD (38), Emmanuelle Ginglinger MD (39), Bénédicte Gérard MD (38), Rolf W Stottmann PhD (40), Aurélien Trimouille MD, PhD (4,41)

Affiliations

(1) Département de génétique médicale, Groupe Hospitalo-Universitaire Pitié-Salpêtrière, AP-HP.Sorbonne Université, Paris, France

(2) Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel

(3) Service de Génétique Médicale CHU de Bordeaux, F-33000, Bordeaux, France

(4) Univ. Bordeaux, INSERM, Maladies Rares : Génétique et Métabolisme (MRGM), U1211, F-33000 Bordeaux, France

(5) Pediatric and Prenatal Imaging Department, CHU de Bordeaux, France

(6) Département de Génétique, CHU de Reims, Reims, France

(7) Department of Translational Genomic, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia

(8) Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
(9) Prevention Genetics, Marshfield, WI, USA

(10) Division of Medical Genetics, Royal University Hospital, Saskatoon, Canada

(11) University of Alabama at Birmingham, Birmingham, AL, USA

(12) HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA

(13) Ann & Robert H Lurie Children’s Hospital of Chicago; Gillette Children’s Specialty Healthcare

(14) Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany

(15) Department of Pediatrics, University Hospital München, Munich, Germany

(16) Rady Children’s Institute for Genomic Medicine, San Diego, California, USA

(17) Department of Neurology, Medical University of Vienna, Austria

(18) University of California, San Diego, Rady Children’s Hospital-San Diego, San Diego, California, USA

(19) Department of Neuroscience at the University of California, San Diego, San Diego, California; Division of Neurology, Rady Children’s Hospital San Diego, San Diego, California

(20) Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy

(21) Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy

(22) Sup’Biotech, Paris, France

(23) Departments of Neurology and Pediatrics Institute of Human Genetics and Weill Institute for Neurosciences University of California, San Francisco, San Francisco, California

(24) Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada

(25) ARUP Laboratories, Salt Lake City, UT 84108, USA

(26) Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT 84108, USA

(27) Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
(28) Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany

(29) Fachbereich Neuromuskuläre Erkrankungen und klinische Neurophysiologie, Dr. von Haunersches Kinderspital, Munchen, Germany

(30) Division of Pediatrics, University of Alberta, Edmonton, Alberta, Canada

(31) Departments of Pediatrics and Medicine, Columbia University New York NY USA

(32) Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA

(33) Divisions of Neonatology, Genetics and Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH USA; Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA

(34) Division of Genetics and Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH USA; The Ohio State University College of Medicine, Columbus, OH, USA

(35) Sanford Children's Specialty Clinic, Sioux Falls, South Dakota, USA

(36) Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA

(37) Department of Medical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

(38) Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg University Hospitals, Strasbourg, France

(39) Génétique médicale, Hôpital Emile Muller, Mulhouse, France

(40) Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA

(41) Service de Pathologie CHU de Bordeaux, F-33000, Bordeaux, France

* current address: Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA

Corresponding author:

Jean-Madeleine de Sainte Agathe MD, jean-madeleine.desainteagathe@aphp.fr
Supplementary note 1:

During the compilation of ARF1 putative loss-of-function variant, we excluded four gnomAD individuals with presumed loss-of-function variants. Indeed, two individuals in gnomADv2.1.1 (rs755638275, available at https://gnomad.broadinstitute.org/variant/1-228285417-G-GACCTCCCCAAGCCATGAATGCGGCCAGATCACAGACAAGCTGGGGCTGCAC?dataset=gnomad_r2_1) and two individuals in gnomAD v3.1.1 (79 nucleotides deletion, c.148+2_149del, available at https://gnomad.broadinstitute.org/variant/1-228097260-TAGGTGAGGGGGGCGACAGGAGTGCTGGGCTGCGCTGGCAAGGATCAAAGCCTACCCTGCATCCCCGACACC-T?dataset=gnomad_r3) were identified with alleles predicted to be splice disruptive but could not be counted as germline loss-of-function variants with enough confidence after examination. We observed the following issues: long alternative alleles matching a processed pseudogene and poor read support. The two variants in gnomADv2.1.1 (rs755638275) had high strand bias (Phred-scaled p-value of Fisher’s exact test = 45.347) and a very low QD score (QD < 6), which failed to meet satisfying confidence for germline variants. Alternative alleles were compatible with a processed pseudogene (inserted/deleted nucleotides concordant with exon4/exon5 junction, intronic heterozygous SNV present in the supposedly heterozygous 79pb deletion). This issue has been submitted to gnomAD production team and resulted in the suppression of the read data of the gnomAD v3.1.1 individuals.

Supplementary note 2:

The in-vitro activation of Arf1Y35H in transfected cells previously reported was weaker compared to Arf1WT transfected cells but stronger compared to basal activation, which is compatible with the Arf1 overexpression in transfected cells compared to non-transfected cells.3
Supp. Fig. 1

A) Missense deleteriousness predictions from CADD (GRCh37-v1.6), REVEL, MISTIC, BayesDel (noAF), M-CAP and Varity_ER of benign ARF1 missense variants, and pathogenic variants of this cohort (eight substitutions, seven distinct missense variations, red). Vertical axis: deleterious prediction scores; horizontal axis: ARF1 residues.

One missense variant in gnomADv3.1 (1-228097853-A-C (GRCh38); p.(Asp129Ala), available at: https://gnomad.broadinstitute.org/variant/1-228097853-A-C?dataset=gnomad_r3 has been excluded from this analysis because of highly suspicious quality metrics (QD=1.136) and poor read support for germline heterozygous substitution (allelic fraction of 29% based on 5/17 reads and 3/5 having a base quality <7). This issue has been reported to gnomAD Production Team.

The better discrimination superiority of MISTIC was not biased by the presence of three missense variants in HGMD* or ClinVar* (p.Y35H, p.R99H and p.K127E), since the positive training sets used for MISTIC did not include these variants or any other variants of our cohort.
MISTIC discriminates pathogenic from benign variants with better accuracy than CADD, M-CAP, BayesDel, REVEL or Varity. Potential splicing alteration of the cohort variants were investigated with spliceAI, which predicted no impact.10

B) RNA results for NM_001658.4(ARF1):c.384+1G>T. Above panel showing SpliceAI-visual predictions.11 Above: predictions for the wild-type sequence, middle: predictions for the c.384+1G>T variant, below: close-up of the predicted amino-acid sequence inserted after Gln128. The variant is highlighted in red. Below panel showing ARF1 cDNA PCR and Sanger analysis.
Supp. Fig. 2

Stabilization of the Lys127 sidechain by Asp93. The second phosphate of GDP is interacting with the Ala26-Asp27 backbone, in close contact with Arg99.
Structure of ARF1 (grey cartoon) in its inactive GDP-bound conformation (1r8s)\(^\text{12}\), with 3 mutated residues in yellow. Dashed blue lines: H-bonds; dashed yellow lines: ionic bonds; the red ball marked by a white asterisk represents H\(_2\)O molecule.
Sup. Fig. 3

GEF uses Phe51 hydrophobic ring to ‘pinch off’ ARF1 switch loop. This interaction is required for the GEF to push out the GDP during activation of ARF1. The Phe to Leu missense is likely to alter the strength of this interaction.

In blue and in grey: GEF, ARF1, respectively, according to the structure 1s9d (right) or to the modelled PheS1Leu by Swiss-Model using 1s9d as template (left). Grey dashed lines: hydrophobic interactions.

Supp. Fig. 4

Molecular hypothesis for recurrence of chr1(GRCh38):g.228097627G>A p.(Arg99His).

<table>
<thead>
<tr>
<th>Strand</th>
<th>R99</th>
<th>R99</th>
<th>R99</th>
<th>R99</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ (5’ => 3’)</td>
<td>GCGTG</td>
<td>GCGTG</td>
<td>GCGTG</td>
<td>GCATG</td>
</tr>
<tr>
<td>- (3’ <= 5’)</td>
<td>GCAC</td>
<td>GCAC</td>
<td>GTAC</td>
<td>GTAC</td>
</tr>
</tbody>
</table>

The nucleotidic context of the recurrent substitution is compatible with a spontaneous deamination of a methylated cytosine, known to be in high proportion among de novo substitutions. The methylated cytosine (“m”, in red: methyl radical), spontaneously deaminates in thymine (red “T”), followed by mismatch repair. NB: in this figure, only the incorrect mismatch repair causing the missense is shown (strand +, G>A), the correct mismatch repair (strand −, T>C) is not depicted.
Supp. Fig 5. Brain MRI images

A) Individual #1, 2 years, axial T1-weighted MRI section showing periventricular nodular heterotopia.
B) Individual #9, 12 years old. Sagittal T1-weighted section showing relative microcephaly, cerebral atrophy, partial hypoplasia of corpus callosum (especially posterior), and cerebellar vermis hypoplasia. Axial T2-weighted sections showing bilateral enlargement of parietal subarachnoid spaces.
C) Individual #11, 2 years old. Sagittal T1-weighted section showing thin aspect of the corpus callosum (more pronounced at the splenium), relative microcephaly and cerebellar vermis hypoplasia.
D) Individual #13, age unknown, T2-weighted sections showing PNH (red arrows).

Supplemental data references

