
947Pagnamenta AT, et al. J Med Genet 2022;59:947–950. doi:10.1136/jmedgenet-2021-108027

Brief communication

Variable skeletal phenotypes 
associated with biallelic 
variants in PRKG2

The 100 000 Genomes Project (100KGP) 
is a UK- wide initiative that has a goal of 
using whole genome sequencing (WGS) 
to identify genetic causes of rare inher-
ited diseases and embed the use of this 
technology within the NHS.1 Using data 
from this resource alongside interna-
tional gene- matching efforts, four indi-
viduals from two independent families 
were identified harbouring homozy-
gous frameshift or stop- gain variants 
in PRKG2, a recently described skeletal 
dysplasia gene.2 Detailed clinical and 
radiological assessments helped extend 
the phenotypic range associated with 
this autosomal recessive condition while 
functional studies indicated that both 
variants had a similar impact on FGF- 
induced MAPK signalling.

PRKG2 encodes the cyclic guanosine 
monophosphate dependent protein kinase 
II (cGKII), which acts downstream of the 
natriuretic peptide receptor- B/C- natriuretic 
peptide (NPR- B/CNP). NPR- B is encoded 
by NPR2, biallelic variants in which are 
responsible for acromesomelic dysplasia, 
Maroteaux type (AMDM; MIM 602875). 
Rodent models further implicate PRKG2 
in skeletal development3 4 and cGKII defi-
ciency was shown to be the cause of the 
dwarfism phenotype observed in Angus 
cattle.5 Building on support from pathway 
analysis and model organisms, a recent 
study showed that biallelic PRKG2 vari-
ants can result in acromesomelic dysplasia, 
PRKG2- type (AMDP) in humans,2 adding 
PRKG2 to a list of >400 genes associated 
with genetic skeletal disorders.6 As only 
two affected individuals were reported, it is 
important that the full clinical range of this 
condition is described.

In this study, we searched for rare bial-
lelic PRKG2 variants using data from 
the 100KGP via the LabKey applica-
tion available within Genomic England’s 
research environment. Researchers can 
apply for access online (www.genom-
icsengland.co.uk/join-a-gecip-domain). 
Initial filtering employed a 1% population 
allele frequency threshold based on data 
from the 1000 Genomes Project as well as 
in- house frequency information. An addi-
tional family was identified via a network 
of collaborators and variants were classi-
fied using ACMG criteria (online supple-
mental table 1).

In family 1, WGS and subsequent 
Sanger sequencing uncovered a homo-
zygous pathogenic PRKG2 variant, 
NM_006259.3:c.2282dup (p.Asp-
761Glufs*34; online supplemental figure 1) 
in three brothers referred with spondylome-
taphyseal dysplasia (figure 1A). Interestingly, 
the middle- affected brother (F1- IV- 6) also 
has type I osteogenesis imperfecta (OI). An 
early clinical exome sequencing study found 
that for 4.6% of cases with a molecular 
diagnosis, more than one gene was contrib-
uting to a blended phenotype.7 Complex 
cases such as these are expected to be more 
common in highly consanguineous fami-
lies where large regions of homozygosity 
(ROHs) make up a significant proportion 
of the genome; however, for F1- IV- 6 the 
secondary diagnosis of OI was due to a 
COL1A1 frameshift, which had arisen de 
novo. OI was suspected in this child because 
of multiple fractures in childhood (arm 
as an infant, wrist aged 8 and thoracic T6 
wedge fracture) combined with blue sclerae. 
It is certainly possible that the coexistent OI 
may have had an impact on the severity of 
the phenotype in this individual, not least 
because his height was more significantly 
reduced than for his two brothers and OI 
(type 1) is a known cause of reduced stature 
in its own right.

In family 2, exome sequencing for a girl 
with acromesomelic dysplasia revealed a 
homozygous pathogenic PRKG2 variant 
c.1705C>T; p.(Arg569*) (online supple-
mental figure 2), observed previously in a 
patient with similar clinical and radiolog-
ical features.2 Comparison of the available 
genomic data for F2- V- 3 and the previ-
ously published case was not able to detect 
a shared haplotype across the PRKG2 
locus. However, exome sequencing has 
limited resolution to detect small regions 
of identity by descent and so a founder 
mutation cannot be ruled out. Given 
the differing ethnicities and the fact that 
c.1705C>T lies at a CpG dinucleotide, 
the recurrence of c.1705C>T being due 
to separate mutational events seems a 
more likely scenario.

Both variants described here are 
extremely rare; p.(Asp761Glufs*34) is 
absent from gnomAD (https://gnomad. 
broadinstitute.org), while p.(Arg569*) is 
present as a singleton allele. In both fami-
lies, the disease- causing variants lay within 
large ROHs (online supplemental table 2). 
Pathogenic variants are overrepresented in 
the largest ROHs and it has been proposed 
that lying in one of the top 10 such regions 
can be used as evidence supporting patho-
genicity.8 While the p.(Arg569*) variant 
has already been demonstrated to affect 
the downstream MAPK pathway,2 the 

p.(Asp761Glufs*34) in family 1 is likely 
to be disruptive given the switch of the 
final Asp- Phe residues for 33 alternative 
amino acids at the C terminus. In silico 
modelling highlights the structural impor-
tance of this region, in particular the final 
Phe762 residue (figure 1B, supplementary 
methods; interactive version at https:// 
michelanglo.sgc.ox.ac.uk/r/prkg2).

To functionally confirm the patho-
genicity of the newly identified 
p.(Asp761Glufs*34) variant, we first 
analysed cGKII expression by western 
blot analysis. Plasmid construction 
for p.(Asp761Glufs*34) involved a 
sequential PCR strategy (supplemental 
methods), with the previously charac-
terised p.(Arg569*) variant employed 
as a positive control. For both variants, 
cGKII was detected at the predicted 
size (figure 1C), although at dramati-
cally reduced levels (≥80%) compared 
with the wild type (figure 1D). Next, 
we evaluated whether the p.Asp-
761Glufs*34 mutant was able to 
inhibit FGF2- induced MAPK pathway 
by analysing its ability to induce phos-
phorylation of Raf- 1 at Ser- 43 and 
ERK1/2, as described previously.2 
Wild- type cGKII downregulated MAPK 
signalling by reducing ERK1/2 acti-
vation through the upstream phos-
phorylation of Raf- 1 at Ser- 43 in a 
cGMP- dependent manner. However, 
the p.Asp761Glufs*34 mutant failed 
to phosphorylate Raf- 1 at Ser- 43 and 
thus, reduced FGF2- induced ERK1/2 
phosphorylation (figure 1E–F), similar 
to results for the p.Arg569* variant.2

Detailed phenotypic information is 
provided for both families and compared 
with the two published cases (online 
supplemental table 2, figure 3). Radio-
logical findings for F2- V- 3 were very 
similar to those observed for ‘Proband 
1’ described previously,2 which is 
unsurprising given that both individ-
uals harbour the same homozygous 
p.(Arg569*). In contrast, for PRKG2 
family 1 there was a consistent radio-
logical phenotype distinct from previ-
ously reported AMDP and AMDM. The 
three brothers reported here (F1- IV- 3, 
IV- 6 and IV- 7) had no evidence of acro-
mesomelic shortening, except for mild 
shortening of toes observed for indi-
vidual F1- IV- 7. The main findings were 
platyspondyly with anterior vertebral 
body projections, long slender femoral 
necks and some metaphyseal irregularity 
(most evident in the radius and ulna) 
and striations (figure 2). The metaphyses 
of the distal phalanges were some-
what cone- shaped in one child, but not 
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pronounced, generalised or associated 
with shortening, as seen in AMDM.9 
In summary, family 1 exhibited a skel-
etal phenotype characterised by spon-
dylometaphyseal dysplasia, rather than 
acromesomelic dysplasia as expected in 
AMDP and AMDM.

Interestingly, the PRKG2 locus has been 
identified in several genome- wide asso-
ciation studies on height (www.ebi.ac. 
uk/gwas/genes/PRKG2). Therefore, the 
description of this now confirmed Mende-
lian condition constitutes an additional 
example of rare variants in a gene causing 

a severe condition, where common vari-
ants in the same gene are associated with 
a related trait.10 In summary, analysis 
of 100KGP data combined with gene- 
matching efforts identified four affected 
individuals with biallelic loss of func-
tion variants in PRKG2, extending the 

Figure 1 Pedigrees, structural modelling and the effects of the PRKG2 variants on cGKII protein levels/MAPK pathway regulation. (A) Simplified pedigrees 
and segregation of variants in PRKG2 and COL1A1 in two families with rare skeletal dysplasias. More detailed pedigrees are shown in online supplemental 
figure 4. AMD, acromesomelic dysplasia (mild); ND, not determined; OI, osteogenesis imperfecta; SMD, spondylometaphyseal dysplasia; WT, wild- type; *, 
WGS performed as part of 100KGP; +, exome sequencing. The COL1A1 variant was initially detected by targeted sequencing in 2011 but confirmed to have 
arisen de novo by WGS. (B) Structure of cGKII (wild type: turquoise) with overlay of the mutant, p.Asp761Glufs*34 (salmon) extension and inset of Phe762 
residue. The protein kinase domain is regulated by two cyclic nucleotides binding (CNB) domains. The predicted C- terminal extension would fall between 
CNB- A domain and the protein kinase domain and is likely to interfere with the activation of the latter by the former, were it to be stable, a conclusion not 
supported by in silico predictions. In fact, the extension results in a deleterious amino acid change of a core residue, Phe762, to a leucine (inset). Also visible 
is the hydrogen bond between the terminal carboxylate and Thr519, whereas the amide bond between Leu762 and Leu763 is forced away in order to best 
accommodate the subsequent residues. (C) Immunoblotting results for cGKII (upper panel) and GAPDH as an endogenous control (lower panel) of cell 
lysates extracted from transiently transfected HEK293T cells. Both human cGKII mutants as well as wild- type (WT) proteins were detected at their predicted 
size: R569*: 65.1 kDa and D761Efs*34: 91.1 kDa (calculated by using the ExPaSy online tool, https://web.expasy.org). (D) Densitometry quantification of 
cGKII showing that there is an 80% reduction in expression of the two mutants compared with WT. (E) Western blots of phosphorylated Raf- 1 and ERK1/2 
proteins of the MAPK pathway showed that neither of the mutants were able to phosphorylate c- Raf at Ser43 and therefore downregulate ERK activation 
compared with WT in response to FGF2 induction in transiently transfected HEKT293 cells. (F) Densitometry quantification of pMAPK 44/42 protein revealed 
that neither R569* nor D761Efs*34 mutants were able to downregulate FGF2- induced ERK1/2 activation compared with WT, in transiently transfected 
HEK293 cells in the presence of 8- pCPT- cGMP. Three biological experiments were performed, and significance values are represented as *p<0.05, 
**p<0.01, ***p<0.001 and ****p>0.0001. EV, empty vector; T−, untransfected cells.
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phenotypic range of this condition to 
include spondylometaphyseal dysplasia. 
The patients described here were the only 
individuals harbouring severe biallelic 

PRKG2 variants across all rare disease 
areas within the 100KGP. These data 
include 295 patients recruited due to 
an unexplained skeletal dysplasia and 

therefore our results are consistent with 
this condition being extremely rare in 
humans.
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Figure 2 Radiographic findings in two families with PRKG2 variants: radiographs of left upper 
limb (A) and lower limb (B) in a 26- month- old boy (F1- IV- 7) from family 1. The long bones are stocky 
in appearance but there is no disproportion within the limbs. (C) Pelvic radiograph at age 4 in same 
child shows development of long, slender femoral necks. (D) Lateral spinal radiograph at age 4 
show generalised mild platyspondyly with small central anterior projections of the vertebral bodies, 
and hypoplasia of the L2 vertebral body. (E) Left hand radiograph at age 11 in same child shows no 
brachydactyly; there is mild metaphyseal chondrodysplasia evident in the distal radius and particularly 
the ulna, with some metaphyseal striations (black arrow); subtle coning of the distal phalangeal 
metaphyses is evident (white arrows), without associated shortening. Pelvic (F) and lateral spine (G) 
radiographs in middle affected sibling (F1- IV- 6) in family 1 showing similar features of long slender 
femoral necks and platyspondyly with anterior vertebral body projections. Osteopaenia is also evident; 
this child also has type 1 osteogenesis imperfecta due to a de novo pathogenic variant in COL1A1. 
Additional radiology is available for F1- IV- 3 in online supplemental figure 5 which shows similar results 
to those for F1- IV- 7. (H) Left hand radiograph in female child (F2- V- 3, aged 10 years) from family 2 
showing generalised brachydactyly. (I) Right upper limb radiograph also from F2- V- 3 demonstrates mild 
disproportionate shortening of the radius and ulna relative to the humerus (mesomelic shortening). 
(J) Pelvic radiograph from F2- V- 3 demonstrates mildly elongated femoral necks. (K) Lateral spine 
radiograph from the same individual demonstrates mild platyspondyly with small anterior vertebral 
body projections.
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