Short report

Biallelic variants in BRCA1 gene cause a recognisable phenotype within chromosomal instability syndromes reframed as BRCA1 deficiency

Adela Chirita-Emandi 1,2, Nicoleta Andreescu,1,2 Cristina Popa,1 Alexandra Mihailescă1, Anca-Lelia Riza,3,4 Razvan Plesea,3,4 Mihai Ioana,3,4 Smaranda Arghirescu,5,6 Maria Puiu1,2

ABSTRACT
Pathogenic variants in BRCA1 gene in heterozygous state are known to be associated with breast-ovarian cancer susceptibility; however, biallelic variants cause a phenotype recognised as Fanconi anaemia complementation group S. Due to its rarity, medical management and preventive screening measures are insufficiently understood. Here, we present nine individuals (one new and eight previously presented) with biallelic variants in BRCA1 gene, to delineate clinical features in comparison with other chromosome instability syndromes and understand the patients’ health risk. Features seen in these 9 individuals (7 females/2 males) include prenatal and postnatal growth failure (9/9), microcephaly (9/9), hypospadias (9/9), facial dysmorphism (9/9), mild developmental delay (8/9) and early-onset solid tumours (5/9). None presented bone marrow failure or immunodeficiency. Individuals with biallelic variants in BRCA1 also showed chromosomal instability by mitomycin and diepoxybutane test. The phenotype caused by biallelic BRCA1 variants is best framed between Fanconi anaemia and Nijmegen syndrome, yet distinct due to lack of bone marrow failure and immunodeficiency. We hypothesise that disease class should be reframed and medical management in people with biallelic variants in BRCA1 should emphasise on detection of solid tumour development and avoiding exposure to ionising radiation.

INTRODUCTION
Heterozygous pathogenic variants in BRCA1 gene (MIM 113705) are known to associate with breast-ovarian cancer susceptibility (MIM 604370),1 while biallelic variants cause a phenotype characterised by short stature, microcephaly, neurodevelopmental delay, dysmorphic features, skin pigmentation lesions and chromosomal fragility, recognised as Fanconi anaemia complementation group S (MIM 617883).2–6 Due to its rarity, medical management and preventive screening measures are insufficiently understood, especially in males. Biallelic BRCA1 have been associated with Fanconi anaemia phenotype due to multiple congenital anomalies and increased sensitivity to ionising radiation. However, bone marrow failure, a hallmark characteristic of Fanconi anaemia, was not reported in people with biallelic variants in BRCA1 gene.7 People with biallelic BRCA1 variants have an increased risk for early-onset solid tumours, while solid tumour development is observed in less than 2% of patients with mutations in canonical Fanconi anaemia genes.7 Other chromosomal breakage syndromes that cause short stature and microcephaly, as well as increased cancer risk, include ataxia telangiectasia, Bloom syndrome and Nijmegen syndrome. Nevertheless, the syndromes differ in presentation and cancer type predisposition. Understanding the natural history of the disease, possible complications and long-term survival is equally important for creating appropriate medical recommendations. Therefore, we aim to present nine individuals (one new and eight previously presented) with biallelic variants in BRCA1 gene, to delineate clinical features and understand disease presentation and health risk in these patients, in comparison with other chromosomal instability syndromes.

SUBJECTS AND METHODS
Clinical, laboratory and genetic assessments were performed in Romanian Regional Centers of Medical Genetics Timis and Dolj, part of European Reference Network ERN ITHACA.

High-density SNP array was performed using the Infinium OmniExpress-24 BeadChip array (Illumina, San Diego, USA), as described elsewhere.8 Next-generation sequencing and Sanger sequencing were performed in Timisoara using TruSightOne 4813 genes kit and MiSeq machine (Illumina, San Diego, USA) according to manufacturer’s protocols. Bioinformatics analysis was described elsewhere.9 Single-nucleotide variants were confirmed by Sanger sequencing, together with familial segregation analysis, using ABI3730 DNA Analyzer (Applied Biosystems, CA, USA) with BigDye Terminator v1.1 Cycle Sequencing Kit. Chromosomal breakage study with diepoxybutane (DEB) and mitomycin (MMC) was tested in heparinised peripheral blood from the patient and a healthy control, using standard protocols.10 A score (breaks/cell) superior to 0.8 in DEB culture was considered positive for diagnosis. Cells with more than 10 breaks were considered positive in MMC culture.

RESULTS
A male newborn presented with intrauterine growth restriction, microcephaly, hypotelorism, epicanthal

Correspondence to
Dr Adela Chirita-Emandi,
Genetics, Universitatea de Medicina si Farmacie Victor Babes Timisoara, Romania

Received 22 May 2020
Revised 13 July 2020
Accepted 14 July 2020
Published Online First 25 August 2020

Disclosure statement
The authors have no conflicts of interest to declare.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

COPYRIGHT
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journaleditor@bmj.com
Karyotype sequencing number gain or loss, arr(1–22)x2, (X,Y)x1. The next-elucidated. Chromosomal breakage study with DEB showed 1.67 established they are in trans position, as parental origin could be confirmed by Sanger sequencing in the patient and additionally deletion NM_007300.3:c.843_846delCTCA, NP_009231.2:(GRCh37) NM_007300.3:c.2933dupA, NP_009231.2:p.

(figure 1E) Proband’s cells showing chromosomal breakage induced by mitomycin C test and (f) dyepipoxobutane test.

folds, convergent strabismus, bulbous nose, wide-set nipples, micropenis, bilateral cryptorchidism, clinodactyly, hypochromic spots and café-au-lait spots on the thorax and anterior thighs (figure 1A, B, C). He was born from non-consanguineous, healthy parents, at 37 weeks of gestation, with birth weight 1810 g (<−3.71 SD), birth length 46 cm (<−2.05 SD) and cranial perimeter 28 cm (<−5.09 SD). Blood count was normal at birth. Seckel syndrome and craniosynostosis were suspected. Cranial CT at age 2 weeks showed open cranial sutures and normal brain structure.

At age 6 months, he was 57 cm in length (<−4.97 SD) and 33 cm in head circumference (<−8.47 SD), while at age 2 years, height was 70 cm (<−5.30 SD) and head circumference was 36 cm (<−8.80 SD). He was able to sit at age 7 months and started walking at age 1 year and 7 months. At 2 years, he spoke three words and was hyperkinetic. Family tree, presented in figure 1E, showed a cousin of the proband’s mother with breast cancer at age 35 years.

Other disorders were considered in the differential diagnosis, as follows: short stature and microcephaly syndromes, skeletal dysplasias, growth hormone deficiency, chromosome instability conditions (Fanconi anemia, Nijmegen breakage syndrome (NBS), Bloom syndrome, ataxia telangiectasia), NBS-like disorder, RAD50 deficiency and Seckel syndrome.

The family was evaluated by a geneticist at age 1 month. Karyotype was 46,XY without any rearrangements. The molecular karyotype (SNP array) did not show pathogenic copy number gain or loss, arr(1–22)x2,(X,Y)x1. The next-generation sequencing (NGS) TruSightOne panel showed two pathogenic variants in BRCA1 gene: one pathogenic stopgain variant (GRCh37) NM_007300.3:c.2933dupA, NP_009231.2:p. (Tyr978Ter), rs878853292 paternal and a pathogenic frameshift deletion NM_007300.3:c.843_846delCTCA, NP_009231.2:p. (Ser282TyrfsTer15), rs80337919 maternal. The variants were confirmed by Sanger sequencing in the patient and additionally established they are in trans position, as parental origin could be elucidated. Chromosomal breakage study with DEB showed 1.67 breakage/cell (figure 1F), while MMC-treated cells presented more than 10 breaks/cell in 80% versus 20% in healthy control’s cells (figure 1D). The patient’s phenotype is presented in table 1, alongside eight other patients presented in literature.2–6

Blood count and other blood work were in the normal range, including liver, renal, bone, glucose and lipid metabolism. Immunoglobulin levels were normal. Luteinising hormone was 8.26 (normal 0.1–0.4 mIU/mL) and follicle-stimulating hormone was 22.25 (normal 0.2–2.8 mIU/mL). Testosterone was 0.07 mg/mL; however, at 6 months, boys normally show very low testosterone levels. Anti-Müllerian hormone (AMH) at 6 months was 83.89 pmol/L and considered low (25th centile for age 287.97 pmol/L), thus suggesting hypergonadotropic hypogonadism.11 Insulin-like growth factor 1 was 19.3 ng/mL (median value for age 89.3 ng/mL), in connection to the patient’s growth failure. Abdominal ultrasound was unremarkable. Testes were shown in the inguinal canal bilaterally. Cardiological evaluation at 6 months revealed persistent ductus arteriosus with a left to right shunt, spontaneously closed by age 1 year.

DISCUSSION

Phenotypic description of BRCA1 deficiency

We report a male infant of Romanian descent carrying two pathogenic variants in trans, in the BRCA1 gene. The NM_007300.3:c.2933dupA of paternal origin in our patient creates a premature translational stop signal (p.Tyr978*) in the BRCA1 gene (ClinVar ID:236270). Loss-of-function variants in BRCA1 are known to be pathogenic.11 The pathogenic frameshift deletion c.843_846delCTCA (ClinVar ID:17683), of maternal origin, creates a premature translational stop signal (p.Ser282TyrfsTer15) that is expected to result in absent or disrupted protein product. This variant has been described in the literature (also as 962del4) in several individuals with breast and/or ovarian cancer from Romania,14 Europe and outside Europe.13 15

Until now, eight individuals have been reported with biallelic BRCA1 pathogenic variants.2–6 A summarisation of the features identified in our patient and in those previously reported is presented in table 1; however, a detailed description of the phenotype or medical history was not available for all. The majority (7/9) were females and were diagnosed using whole exome sequencing or NGS panels of genes, mainly due to the presence of malignancy (5/9). Only one other male patient was identified through familial screening for BRCA1 variants identified in his sister after she presented neuroblastoma at the age of 2 years.6 Despite relatively high carrier frequencies in populations, biallelic variants in BRCA1 have rarely been reported, presumably because most combinations of deleterious BRCA1 variants would result in embryonic lethality.5

Four of the nine patients reported presented solid tumours as follows: breast carcinoma in 2/7 females, ovarian cancer in 1/7 females and neuroblastoma in 1/9 individuals. One patient presented T-cell acute lymphoblastic leukaemia. However, age at follow-up ranged from 2 to 31 years, while the majority of individuals (6/9) were under 16 years when reported. All individuals presented family history with various cancer types, most commonly involving the breast, ovaries and uterus. A longer follow-up period is needed to understand the natural history of disease and tumour onset.

Most individuals (6/8 with available information) were born small for gestational age, while other two individuals had borderline suboptimal birth weight (2790 g/2900 g). All individuals (8/8) presented congenital and postnatal progressive microcephaly (ranging from ~8 to −2 SD for age and gender), failure to thrive and short stature (range −6 to −2 SD). Most individuals had mild learning disability (8/9). The only patient with normal intelligence was reported by Keupp et al.4 However, in the 30-year-old female, one of the BRCA1 variants (p.Arg1699Gln) was hypomorphic and estimated to confer intermediate cancer risk.4 In this individual, the chromosomal breakage percentage/
Table 1 Characteristics of people with biallelic BRCA1 pathogenic variants

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td>Compound heterozygous</td>
<td>Compound heterozygous</td>
<td>Compound heterozygous</td>
<td>Homozygous</td>
<td>Homozygous</td>
<td>Homozygous</td>
<td>Homozygous</td>
<td>Compound heterozygous</td>
<td>Compound heterozygous</td>
</tr>
<tr>
<td>BRCA1 transcript</td>
<td>Various</td>
<td>c.2473delGC</td>
<td>c.5027T>C</td>
<td>c.594-593delC·595delC· T in trans</td>
<td>c.2709T>A</td>
<td>c.1115G>A</td>
<td>c.1292T>G</td>
<td>c.187T>G</td>
<td>c.2153dupA/c.841_848delCTCA in trans</td>
</tr>
<tr>
<td>Genetic test for diagnosis</td>
<td>Panel or WES</td>
<td>NA</td>
<td>WES</td>
<td>Panel 241 genes</td>
<td>Panel 241 genes</td>
<td>Panel 241 genes</td>
<td>Panel 241 genes</td>
<td>WES</td>
<td>Panel 241 genes</td>
</tr>
<tr>
<td>Gender</td>
<td>2/9 male</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
<td>Female</td>
<td>Male</td>
<td>Male</td>
</tr>
<tr>
<td>Age at follow-up (years)</td>
<td>2–31</td>
<td>28</td>
<td>25</td>
<td>3.7</td>
<td>5</td>
<td>8</td>
<td>15.5</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>Growth failure prenatal</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Weight for gestational age, birth weight (g) and SD</td>
<td>Normal</td>
<td>6/8 term</td>
<td>NA</td>
<td>SGA, term, 1900g</td>
<td>SGA, term, 1630g</td>
<td>SGA, term, 2790g</td>
<td>SGA, term, 1600 g</td>
<td>AGA, 2900g</td>
<td>AGA, 37 weeks, 1810 g</td>
</tr>
<tr>
<td>Growth failure postnatal height SD</td>
<td>9/9</td>
<td>Yes, moderate to severe</td>
<td>Adult height 150 cm</td>
<td>Adult height 135 cm</td>
<td>92 cm</td>
<td>Failure to thrive</td>
<td>Adult height 150 cm</td>
<td>70 cm</td>
<td>70 cm</td>
</tr>
<tr>
<td>Microcephaly</td>
<td>9/9</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Head circumference percentage dispersity</td>
<td>8/8</td>
<td>Disproportional</td>
<td>NA</td>
<td>At birth 27 cm</td>
<td>At birth 25 cm</td>
<td>NA</td>
<td>NA</td>
<td>52 cm</td>
<td>52 cm</td>
</tr>
<tr>
<td>Developmental delay IQ</td>
<td>8/9</td>
<td>Mild</td>
<td>Yes, delayed speech at age 4 years</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Eye anomaly</td>
<td>Microphthalmia, blepharophimosis</td>
<td>NA</td>
<td>Bithemoral narrowing</td>
<td>Long eyelashes</td>
<td>Microphthalmia</td>
<td>Microphthalmia</td>
<td>Microphthalmia</td>
<td>Microphthalmia</td>
<td>Microphthalmia</td>
</tr>
<tr>
<td>Eye anomaly</td>
<td>5/8</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ear anomaly</td>
<td>6/7</td>
<td>Upslanting</td>
<td>Upslanting</td>
<td>Upslanting</td>
<td>Upslanting</td>
<td>Upslanting</td>
<td>Upslanting</td>
<td>Upslanting</td>
<td>Upslanting</td>
</tr>
<tr>
<td>Ear anomaly</td>
<td>3/7</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Bulbous nose</td>
<td>3/8</td>
<td>Yes, small alae nasi</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Forehead</td>
<td>Bitemporal narrowing</td>
<td>Anterior hairline low</td>
<td>Bitemporal narrowing</td>
<td>Bitemporal narrowing</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Bitemporal narrowing</td>
</tr>
<tr>
<td>Coarse facial features</td>
<td>2/4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Inferior segment face</td>
<td>8/9</td>
<td>Micrognathia</td>
<td>Micrognathia</td>
<td>Micrognathia</td>
<td>Micrognathia</td>
<td>Micrognathia</td>
<td>Micrognathia</td>
<td>Micrognathia</td>
<td>Micrognathia</td>
</tr>
<tr>
<td>Skin pigment lesions</td>
<td>9/9</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hypomorphicized spots</td>
<td>9/9</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Limb defect</td>
<td>6/8</td>
<td>Yes</td>
<td>Camptodactyly, 2–3 toe syndactyly</td>
<td>Clinodactyly</td>
<td>Small oedematous palms, soles</td>
<td>Small palms, hypoplastic thumb</td>
<td>No</td>
<td>Gynoidactyly</td>
<td>Gynoidactyly</td>
</tr>
<tr>
<td>Hearing loss</td>
<td>9/9</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Other</td>
<td>Undescended testes, joint laxity, heart defect, gastrointestinal and skeletal involvement</td>
<td>NA</td>
<td>Sparse hair, high pitched voice, duodenal stenosis, joint laxity, delayed bone age</td>
<td>Atrial septal defect</td>
<td>Optic nerve hypoplasia, bilateral hip dysplasia</td>
<td>Right first rib hypoplasia, left 11 ribs, short neck</td>
<td>Right undescended testes, extremal insufficiency</td>
<td>Heart defect (AWD and VDD), growth hormone deficiency</td>
<td>Coeliac disease and congenital hip dislocation (left side)</td>
</tr>
<tr>
<td>Reported deceased</td>
<td>2/9</td>
<td>Yes, 6 months after diagnosis of ovarian cancer</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Phenotypes</th>
<th>Summary n=9</th>
<th>Dec 2012</th>
<th>Domchek et al 2017</th>
<th>Sawyer et al 2017</th>
<th>NA 6% vs 0 in control</th>
<th>2% vs 0 in control</th>
<th>NA No</th>
<th>No hypersensitivity to chemotherapy</th>
<th>Intestinal and urological cancer, 2nd and 3rd degree relatives</th>
<th>70% vs 7% 32% vs 8% in control 1.44 vs 1.0 in control 2.14 vs 1.0 in control 6% of cells, 0.12 breaks/cell 1.67 vs 1.0 in control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer in 3rd degree relatives</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Breast cancer in 3rd degree relatives</td>
<td></td>
</tr>
<tr>
<td>Ovarian in 1st and 2nd degree relatives</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Ovarian in 1st and 2nd degree relatives</td>
<td></td>
</tr>
<tr>
<td>Uterine, oesophageal and lung cancer, 2nd and 3rd degree relatives</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Uterine, oesophageal and lung cancer, 2nd and 3rd degree relatives</td>
<td></td>
</tr>
<tr>
<td>Bone marrow failure</td>
<td>9/9</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Bone marrow failure</td>
<td></td>
</tr>
<tr>
<td>Cancer family history</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Cancer family history</td>
<td></td>
</tr>
</tbody>
</table>
| All those affected by chromosome breakage disorders have a greatly increased likelihood of developing cancer and of having prenatal and postnatal growth failure, hypo/hyperpigmented skin lesions, dysmorphic features and gonadal dysfunction. Except for ataxia telangiectasia, the other disorders present various VACTER-L anomalies. Most individuals with Fanconi anaemia present bone marrow failure. In those with ataxia telangiectasia, progressive neurodevelopment is the most prominent feature, usually without microcephaly or intellectual disability. In those with NBS, Bloom syndrome and ataxia telangiectasia, immunodeficiency is usually present. The risk of cancer development at virtually any site and of any type separates Bloom syndrome from the other chromosome instability syndromes. In this frame, the phenotype caused by biallelic BRCA1 variants is best mounted between Fanconi anaemia and Nijmegen syndrome, yet distinct from them due to lack of bone marrow failure and immunodeficiency. With a better understanding of molecular cause of disease, phenotypes become more refined and disease classifications need to be adjusted.

Medical management for patients with BRCA1 deficiency

Similarly to other genes involved in the DNA double-strand break repair pathway, the BRCA1 gene function disruption causes delayed DNA damage recognition, disturbed cell-cycle checkpoint, incomplete DNA repair and increased genomic instability, ultimately triggering increased cancer risk for patients. Therefore, patients within this group of disorders require multidisciplinary management and long-term follow-up. Of great importance are preventive measures to avoid radiation, and production of reactive oxygen species stimulated by pollutants (heavy metals, tobacco, smoke, drugs or chemotherapeutic drugs that frequently induce DNA damage). X-rays and CT cell remained in normal range, suggesting a genotype–phenotype correlation. The patients reported by Keupp et al. and Domchek et al., both with hypomorphic variants, presented the mildest phenotype out of the nine individuals reviewed, also showing the least affected growth and head circumference, nonetheless presented breast/ovarian cancer around the age of 30 years.

The individuals with biallelic BRCA1 variants had similar dysmorphic features: narrow forehead (3/4), upslanting palpebral fissures (5/7), microphthalmia/blepharophimosis (6/8), epicantus (3/8), ear anomaly (5/8), micrognathia (5/9), coarse facial features (2/4), bulbous nose (3/8) and strabismus (2/9). All patients presented skin pigment lesions, 8/8 had hyperpigmented spots (café-au-lait) and 6/8 additionally presented hypopigmented spots. Other features were hearing loss (2/8), various limb defects (6/8) including clindactyly, small hands, hypoplastic thumbs and toe syndactyly, joint laxity (including hip dislocation 2/9), heart defect (including atrial and ventricular septal defect, and persistent ductus arteriosus), gastrointestinal malformation (duodenal stenosis), delayed bone age and growth hormone deficiency. Both boys presented undescended testes (2/2), while microopenis and low AMH was observed in one, suggesting that hypogonadism might be a constant feature in males. Cultured lymphocytes or fibroblasts from the individuals with biallelic variants in BRCA1 displayed induced chromosome instability (using DEB and/or MMC). No sign of immunodeficiency or recurrent infections was reported. None of the patients showed bone marrow failure, differentiating the BRCA1 deficiency from classic Fanconi anaemia and Nijmegen phenotypes.
Patient care in breast cancer: pathogenesis and therapy

Conclusions

This analysis of nine individuals shows that biallelic BRCA1 variants cause a rare syndrome with prenatal and postnatal growth failure, hyper/hypopigmented spots, progressive microcephaly, mild learning disability, induced chromosomal breakage and high susceptibility for solid tumours, without immunodeficiency or bone marrow failure, differentiating the BRCA1 deficiency from classic Nijmegen syndrome and Fanconi anaemia typical phenotype. Cancer type encountered in patients were breast carcinoma, ovarian cancer, neuroblastoma and acute lymphoblastic leukaemia.

Patients within this group of disorders require multidisciplinary management and long-term follow-up that includes preventive measures. Further research is required to guide the clinical management of BRCA1 deficiency.

Acknowledgements

We thank the family of this patient for their trust and cooperation. Regional Center of Medical Genetics Timiş, Clinical Emergency Hospital for Children Louis Turcanu Timişoara and Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova are part of European Reference Network ERN ITHACA for intellectual disability syndromes with or without congenital anomalies.

Contributors

AC-E collected patient’s data and summarised clinical and genetic findings. AC-E, NA, CP, AM, A-LR, RP and MI participated in genetic studies, genetic analyses, bioinformatics and data interpretation. AC-E, SA and MP followed the patient. AC-E drafted the manuscript. All coauthors critically reviewed the manuscript and approved the final submitted version.

Funding

The research was performed in the Center of Genomic Medicine University of Medicine and Pharmacy ‘Victor Babes’ POSCEE project ID:1854, SMIS code 48749, contract 6777/09.04.2015.

Competing interests

None declared.

Patient consent for publication

Parental/guardian consent obtained.

Ethics approval

This study was approved by the University of Medicine and Pharmacy ‘Victor Babes’ Timişoara Ethics Committee (no. 9/30.04.2020).

Provenance and peer review

Not commissioned; externally peer reviewed.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Adela Chirita-Emandi http://orcid.org/0000-0001-7554-4625

References

