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humans, researchers have yet to determine why two homol-
ogous DNA recombinases, namely, RAD51 and DMC1, are 
required in mammalian meiosis.40 41 To identify the mechanism 
of HR, we should create a RAD51 mutant model that specif-
ically disrupts only one of the RAD51-HR-DSB repair func-
tions, which are mitosis and meiosis HR-DSB repair functions. 
Unfortunately, knockout rodents of Rad51 or Rad51  paral-
ogues are embryonically lethal,20–24 so mechanistic studies on 
RAD51-HR-DSB repair in meiosis are limited. Using a sepa-
ration-of-function mutant form of Rad51, Veronica Cloud 
et al19 reported that Rad51 performs a filament-forming 
function in HR of meiosis, but the function of homolo-
gous joint molecules is unnecessary. This observation prob-
ably indicates that Rad51 uses different functions between 
mitotic and meiotic cells. In the present study, we identified 
XRCC2 recessive mutations in a family with complete meiotic 
arrest, azoospermia and infertility. The mouse model with the 
Xrcc2L14P mutation replicated the phenotypes. Homozygous 
female mice exhibited reproductive disorders that were consis-
tent with premature ovary failure. Human XRCC2 and mouse 
Xrcc2 mutants did not exhibit other identifiable phenotypes. 
Although Xrcc2-c.41T>C showed 30% splicing changes, 
the full Xrcc2 protein was detected. We then proposed that 

XRCC2-Leu14Pro was a meiosis-specific mutation, and this 
finding was further confirmed by the following aspects.

First, unlike an XRCC2-truncated male showing congen-
ital malformations and atypical Fanconi anaemia, patients 
with XRCC2-c.41T>C/p.Leu14Pro exhibited infertility only. 
Shamseldin et al31 and Park et al32 identified a truncating 
XRCC2 (homozygous XRCC2-p.Arg215*) on a 2.5-year-old 
male who displayed microcephaly, absent thumbs, absent first 
metacarpal and scaphoid bones, absent radius, facial paralysis, 
ectopic kidney and severe growth deficiency. The somatic cells 
of this child displayed a marked increase in the frequency of 
unrepaired DSBs in response to crosslinking agents. Thus, 
the child was proposed to be affected with atypical Fanconi 
anaemia.31 32 In the present study, when the infertile brothers 
(IV:2 and IV:3) with the XRCC2-c.41T>C/p.Leu14Pro homo-
zygous mutation were examined independently by a neurol-
ogist, haematologist and orthopaedist, neither exhibited any 
of the abovementioned malformations (data not shown). In 
the assay of the somatic cells cultured with DNA breakage 
agents, the frequencies of the unrepaired chromosomal 
breaks of XRCC2-p.Leu14Pro lymphocytes did not increase 
(online  supplementary table S7 and figure S5). Thus, the 
XRCC2-p.Leu14Pro mutation did not disrupt the HR-DSB 

Figure 4  Histology of ovaries showing ovulation defect in Xrcc2L14P/L14P females. (A) Normal ovary of a littermate control. (B) Ovary of an infertile Xrcc2L14P/

L14P female at 90 dpp. (C,D) Ovary of an fertile Xrcc2L14P/L14P female at 93 dpp. Note: No corpora lutea or follicle was identifiable in one side of the ovary (C), 
and few corpora lutea or follicles were observed for the other side of the ovary (D). Magnification: A,B,C,D=40×. Box: ovaries. dpp, days postpartum.
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repair function in somatic cells, or the effect was minimal that 
it was hardly distinguished.

Second, in contrast to the Xrcc2−/− mice exhibiting embry-
onic lethality, reduced size and morphological abnormalities, 
the Xrcc2L14P/L14P mice were viable with unreduced size and 
did not show identifiable malformation other than repro-
ductive defects. These observations verified that Xrcc2 is 
involved in HR-mediated DSB repair.22 24 31 32 Deans et al22 
constructed an Xrcc2 knockout model, in which exon 3 
(86% ofanXrcc2 coding sequence) is deleted. In more than 
300 offspring, heterozygote intercrosses fail to produce 
any Xrcc2−/− mice, thereby indicating that Xrcc2−/− mice 
are embryonically lethal.22 Additionally, Xrcc2−/− embryos 
displaying growth retardation and morphological abnormali-
ties are observed.22 In the present study, the Xrcc2L14P mouse 
model revealed that the heterozygote intercrosses transmitted 
the mutation to the offspring at normal Mendelian frequen-
cies (about 1:2:1; supplementary table S8). The Xrcc2L14P/L14P 
mice were viable, and their size, body weights and physical 
characteristics were indistinguishable among the three groups 
of offspring (online supplementary tables S8–S12 and figure 
S6).

Third, p.Leu14Pro is located on the linker region of 
XRCC2. In RAD51 paralogues, we observed that all of the 
members except XRCC2 are composed of three domains, 
namely, N-terminal and C-terminal domains connected by a 
linker region41 (online  supplementary figure S9). However, 
XRCC2 comprises two domains, namely, a C-terminal 
domain and a linker region, and lacks an N-terminal domain41 
(online  supplementary figure S9). Previous studies stated 
that the linker region of RAD51 paralogues is essential for 
protein–protein interactions,20 42 and two complexes, namely, 
BCDX2 and CX3, have been suggested.20 37 38 In the present 
study, p.Leu14Pro mutation occurred on the linker region of 
XRCC2 (online supplementary figure S9), and this phenom-
enon is different from the previously reported truncating 
p.Arg215*mutation that truncated a part of the C-terminal 
region of XRCC2 (online  supplementary figure S8A) on a 
patient with atypical Fanconi anaemia.30 32

Therefore, this study identified a novel genetic entity of HR-me-
diated DNA repair gene mutation, that is, the point mutation 
on the linker region of XRCC2 was a meiosis-specific mutation 
causing meiotic arrest and infertility. Further functional studies on 
the mutation in the XRCC2 linker region should be conducted.
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