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Figure 3  Major angiogenesis pathways associated with genes identified in the present study. Major components and regulators of the BMP/TGF-β, 
VEGF, PI3K/Akt and Notch signalling pathways are presented in black. Genes in red harbour pathogenic variants; genes in orange harbour likely pathogenic 
variants; genes in yellow harbour variants of uncertain significance. Solid arrows indicate activation; solid bars indicate inhibition; dashed arrows indicate 
general interactions. TGF-β, transforming growth factor beta.

during target design and occasional suboptimal delivery (as can 
happen during manual injection of hundreds of embryos that are 
then pooled for subsequent RT-PCR analysis). However, in all 
cases, two separate, non-overlapping MOs generated identical 
results that were rescued by adding back WT mRNA, and in 
the case of sars, the MO recapitulated the established mutant 
phenotype.21 22

Likely pathogenic de novo variants in candidate pathways
The genes containing the remaining de novo variants were 
screened to identify those involved in the primary pathways of 
angiogenesis (figure 3). Seven likely pathogenic de novo missense 
variants were identified in seven families (table 1).

In patient AVM028, the de novo heterozygous missense 
variant c.311T>C (p.Leu104Pro), in the functional inhibition 
of zinc metalloproteinases (NTR) domain, was identified in 
TIMP3 (table 1), which encodes a tissue metalloproteinase inhib-
itor. TIMP3 inhibits VEGF-mediated angiogenesis by blocking 
VEGF/VEGFR2 binding (figure 3), a function considered inde-
pendent of metalloproteinase inhibition and unique to TIMP3 
compared with other known TIMPs.27

In patient AVM359, the de novo heterozygous missense variant 
c.1592G>A (p.Cys531Tyr) was identified in SCUBE2 (table 1), 
which encodes a membrane-associated multidomain protein. 
The variant is predicted to affect a conserved site (SIFT=0, 
PolyPhen2=1, GERP++=5.68, CADD=24.6). SCUBE2 forms 
a complex with VEGF and VEGFR2 and acts as a coreceptor 
to enhance VEGF/VEGFR2 binding, thus stimulating VEGF 
signalling28 (figure 3). The c.1592G>A (p.Cys531Tyr) SCUBE2 

variant could induce BAVMs via a gain-of-function mechanism, 
though confirmation will require further functional studies.

In patient AVM558, the de novo heterozygous missense 
variant c.1694G>A (p.Arg565Gln) was identified in MAP4K4 
(table 1), which encodes a kinase responsible for phosphoryla-
tion of residue T312 within SMAD1, blocking SMAD1 activity 
in BMP/TGF-β signalling (figure 3).29 Loss of MAP4K4 leads to 
impaired angiogenesis in vitro and in vivo.30

In patient AVM206, the de novo heterozygous missense 
variant c.2075A>G (p.Asn692Ser) was identified in CDH2 
(table  1), which encodes N-cadherin, an integral mediator of 
cell–cell interactions.31 N-cadherin mediates brain angiogen-
esis by stabilising angiogenic capillaries, possibly by enhancing 
the interaction between pericytes and endothelial cells.31 At the 
molecular level, N-cadherin mediates cell–cell adhesion by regu-
lating PI3K/Akt signalling (figure 3).32

In patient AVM467, the de novo heterozygous missense variant 
c.676G>A (p.Gly226Ser) was identified in IL17RD (table  1). 
IL17RD is highly expressed in vessel endothelial cells and vascu-
larised organs, where it inhibits fibroblast growth factor (FGF) 
and plays critical roles in endothelial cell proliferation and 
angiogenesis.33 In contrast to FGF inhibition, overexpression of 
IL17RD attenuates the degradation of epidermal growth factor 
recepter  (EGFR) and enhances downstream MAPK signalling 
(figure 3).34

In patient AVM457, a de novo heterozygous missense variant 
c.3355G>A (p.Ala1119Thr) with a robust deleterious damaging 
predictions (SIFT=0.1, PolyPhen2=0.99, GERP++=4.33, 
CADD=29.3) was identified in PREX2 (table 1). PREX2 acti-
vates PI3K signalling via inhibition of phosphatase and tensin 
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homolog (PTEN),35 and both germline and mosaic PTEN vari-
ants are associated with AVMs.36

In patient AVM427, the de novo heterozygous missense 
variant c.3442G>T (p.Asp1148Tyr) was identified in ZFYVE16 
(table 1), which encodes an endosomal protein also known as 
endofin. ZFYVE16 is an SMAD anchor that facilitates SMAD1 
phosphorylation, thus activating BMP signalling.37 In addition to 
Smad1-mediated BMP signalling, ZFYVE16 also interacts with 
Smad4 to mediate Smad2–Smad4 complex formation and facil-
itate TGF-β signalling,38 indicating a regulatory role in BMP/
TGF-β signalling (figure 3).

Other potential dominant genes with incomplete penetrance
We also examined other inherited dominant pathogenic variants 
potentially involving LoF. Evidence of involvement in the patho-
genesis of AVM was found in patient AVM312, who carried a 
paternally inherited heterozygous nonsense variant, c.1891G>T 
(p.Glu631Ter), in EGFR (table 1). Oncogenic EGFR stimulates 
angiogenesis via the VEGF pathway.39 As a truncated germline 
EGFR variant has not been reported in humans, c.1891G>T 
(p.Glu631Ter) in patient AVM312 was classified as likely patho-
genic and EGFR as a candidate gene due to the vital role of 
EGFR in EGF and VEGF signalling.40

Recurrent biallelic damaging variants
To assess the possibility of a recessive mode of inheritance, we 
investigated all homozygous and compound heterozygous vari-
ants with either a recurrent or LoF allele. Compound heterozy-
gous variants in DSCAML1, DSCAM and PTPN13 were retained.

In two unrelated patients, AVM106 and AVM285, identical 
compound heterozygous variants were identified in DSCAML1: 
c.5783G>A (p.Arg1928His) and c.4574G>A (p.Arg1525His), 
each inherited from heterozygous carrier parents (table 2). Both 
variants were reported in ExAC with an allele frequency <0.001, 
and they were predicted in silico to be highly deleterious 
(GERP++>4 and CADD>30 for both). In patient AVM226, 
we identified the compound heterozygous variants c.3775G>A 
(p.Val1259Ile) and c.2966A>T (p.Gln989Leu) in DSCAM 
(table  2). DSCAML1 and DSCAM have similar neurodevel-
opmental functions and are essential for self-avoidance in the 
developing mouse retina.41

In patient AVM144, the compound heterozygous variants 
c.116–1G>A and c.1000T>A (p.Ser334Thr) were identified in 
PTPN13 (table 2).

Potential oligogenic inheritance
Variants in more than one gene (at least one likely pathogenic 
variant) with differing inheritance origin were identified in three 
patients (figure 1). In patient AVM558, a pathogenic heterozy-
gous variant c.920dupA (p.Asn307LysfsTer27) inherited from 
the mother was identified in ENG. Another de novo novel 
heterozygous missense variant, c.1694G>A (p.Arg565Gln), was 
identified in MAP4K4 (online supplementary table S2), which 
encodes the kinase responsible for phosphorylation of residue 
T312 in SMAD1 to block its activity in BMP/TGF-β signalling.29 
This de novo variant may modify the effect of the truncating 
variant in ENG by repressing BMP/TGF-β signalling.

In patient AVM359, one heterozygous VUS (c.589C>T 
[p.Arg197Trp]) in ENG inherited from the mother and one 
likely pathogenic de novo heterozygous variant (c.1592G>A 
[p.Cys531Tyr]) in SCUBE2 were identified (online supplemen-
tary table S2). SCUBE2 functions as a coreceptor that enhances 
VEGF/VEGFR2 binding to stimulate VEGF signalling.28 In this 

case, both the TGF-β and VEGF signalling pathways could be 
affected, potentially causing a more severe downstream effect 
than would occur with variants in only one of the pathways, 
with the mutations synergising to lead to BAVM.

In patient AVM028, one novel heterozygous VUS 
(c.2207A>G [p.His736Arg]) in RASA1 inherited from the father 
and one likely pathogenic de novo novel heterozygous variant 
(c.311T>C [p.Leu104Pro]) in TIMP3 were identified (online 
supplementary table S2). While TIMP3 blocks VEGF/VEGFR2 
signalling,27 RASA1 modulates differentiation and prolifer-
ation of blood vessel endothelial cells downstream of VEGF 
(figure 3).7 Therefore, the inherited RASA1 variant and de novo 
TIMP3 variant could contribute to BAVM via additive effects on 
the same pathway.

To more completely elucidate details of oligogenic patho-
genesis in BAVM, both inherited heterozygous and de novo 
variants must be carefully examined. In particular, for prenatal 
genetic counselling, both parental and prenatal DNA should be 
sequenced to better evaluate the risk of BAVM.

Discussion
We used a WES genomic approach to identify potential contrib-
utory genes and investigate the genetics underlying BAVM in a 
cohort of 100 sporadic trios. Four pathogenic and eight likely 
pathogenic variants were identified in our cohort, but no signif-
icant recurrence of causal variants was observed, suggesting a 
heterogeneous genetic predisposition to BAVM.

BAVM could be caused by variants in any one of multiple 
genes, especially when one considers that the BAVM phenotype 
presents in multiple other vascular syndromes caused by a spec-
trum of mutations (eg, HHT or CM-AVM).3 4 7 Another factor 
suggestive of genetic heterogeneity is the variable phenotype 
among our BAVM patients, particularly the age of onset (which 
ranged from 3 to 32 years of age (online supplementary table 
S1)), suggesting that variants in different genes potentially affect 
different stages of vascular morphogenesis, probably through 
disrupting distinct biological pathways. The spectrum of both 
size and the location of the BAVM nidus (see online supplemen-
tary case descriptions) also suggests that different genetic mech-
anisms have a unique effect on brain vessels.

Although genetic heterogeneity has hindered the identifica-
tion of major BAVM-associated genes, functional variants in 
genes involved in related biological pathways can be regarded 
as powerful evidence that enhances our understanding of the 
pathogenesis of BAVM.

Major components of BMP/TGF-β signalling, including 
ENG,3ACVRL14 and SMAD4,6 are associated with HHT, 
which can manifest with BAVM. Novel genes identified in our 
cohort (LEMD3 and MAP4K4) antagonise BMP/TGF-β signal-
ling.25 29 Interestingly, the TGF-β antagonist losartan attenuates 
the AVM phenotype in alk1 knockdown zebrafish,13 probably 
by inhibiting angiotensin receptors.42 Considered together with 
our human and zebrafish results, we hypothesise that in vivo 
negative regulators of TGF-β signalling, such as LEMD3 and 
MAP4K4, are critical for fine tuning the signalling pathway 
and normalising the function and patterning of the cerebrovas-
culature. LEMD3 diminishes BMP4-associated upregulation of 
Smad6 and Smad7 expression in vitro.43 MAP4K4 phosphory-
lates SMAD1 at residue T312, blocking its activity in regulating 
BMP signalling (figure  3).29 Another SMAD-interacting gene 
in which a likely pathogenic variant was identified, ZFYVE16, 
encodes a SMAD anchor that binds to SMAD to activate BMP 
signalling.37 ZFYVE16 also interacts with SMAD4 by mediating 
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SMAD2–SMAD4 complex formation, thus facilitating TGF-β 
signalling.38 While ZFYVE16, unlike LEMD3 and MAP4K4, 
does not function as a BMP/TGF-β antagonist, ZFYVE16 vari-
ants could exert similar effects (eg, dominant negative alleles and 
so on). Thus, BMP signalling and key regulators of the pathway 
appear to play critical roles in maintaining cerebrovascular 
homeostasis.

While activating mutations in VEGF signalling have not been 
linked to BAVM pathogenesis in humans, ECs isolated from 
BAVMs display aberrant angiogenic features, including increased 
migration and endothelial cell turnover,44 as well as poor peri-
vascular coverage.45 VEGF expression is also elevated in human 
BAVM tissue.46 Additionally, while adult loss of Alk1 (HHT2) 
or Eng (HHT1) in adult mice is well tolerated, exogenous addi-
tion of VEGF (or stimulation of angiogenesis through cranial 
wounding) robustly produces BAVM in these loss of function 
settings.47 Critically, inhibition of VEGF signalling in experi-
mental models can prevent BAVM formation.48 Embryonic defi-
ciency in mice of either Vegf, or its key receptors Vegfr2 (Kdrl/
Flk) and Vegfr1 (Flt1) disrupts vasculogenesis, as the major axial 
vessels of the dorsal aortae and cardinal veins fail to form.49 In 
our patient cohort, a de novo heterozygous missense variant in 
SARS was identified as causing BAVM in a LoF manner. Previous 
zebrafish studies reported significantly increased levels of vegfa 
mRNA in sars mutants, explained by a mechanism, whereby 
Sars acts as a repressor of vegfa transcription in a non-canonical/
tRNA synthetase independent manner.21 22

SCUBE2 and TIMP3 were each found to harbour one likely 
pathogenic de novo variant, and both affect the binding of 
VEGF to VEGFR2 (figure 3).27 28 SCUBE2 forms a complex with 
VEGF and VEGFR2, acting as a coreceptor that enhances VEGF/
VEGFR2 binding to stimulate VEGF signalling.28 By contrast, 
TIMP3 inhibits VEGF-mediated angiogenesis by blocking VEGF/
VEGFR2 binding.27 Compared with VEGFR1 and VEGFR3, 
which primarily function in growth factor release and morpho-
genesis of lymphatic vessels, VEGFR2 functions primarily in 
angiogenesis.50 Although SCUBE2 and TIMP3 appear to have an 
opposing effect on VEGF/VEGFR2 binding, missense variants 
in these two genes could have a syntrophic effect, though this 
requires further investigation.

Genetic heterogeneity facilitates the identification and char-
acterisation of biological processes and pathways underlying 
complex diseases such as BAVM. Pathogenic and likely patho-
genic variants identified in unrelated cases provided biological 
and epidemiological evidence supporting a causal role for the 
BMP/TGF-β and VEGF pathways in BAVM. Genes associated 
with regulation of SMADs (in BMP/TGF-β signalling) and 
VEGF/VEGFR2 binding (in VEGF signalling) are high-priority 
candidates for further functional studies, genetic screening and 
targeted interventions.

Due to technical difficulties in acquiring BAVM tissue speci-
mens, we were unable to study tissues for somatic KRAS variants, 
which have been recently identified in a substantial proportion 
of BAVM cases.9 However, our study could provide compli-
mentary evidence for those patients whose pathogenesis is not 
explained by KRAS variants, by showing that besides somatic 
mutation, germline de novo mutations also contribute to the 
pathogenesis of BAVM.

In conclusion, we identified four pathogenic variants in 
both a known gene (ENG) and several novel genes (PITPNM3, 
SARS  and LEMD3) in four BAVM patients. We also identified 
8 likely pathogenic variants in 8 patients and 18 VUS in 16 
patients. Our results suggest that a substantial proportion of 
BAVM cases are caused by individual rare pathogenic variants 

that disrupt the function of genes involved in critical angiogen-
esis pathways, including BMP/TGF-β and VEGF. In particular, 
genes regulating biological processes such as SMAD activity (in 
BMP/TGF-β signalling) and VEGF/VEGFR2 binding (in VEGF 
signalling) harboured clusters of pathogenic and likely patho-
genic variants. We also identified potential oligogenic variants in 
three patients, each of which carried suspicious inherited and de 
novo variants, indicating a novel pathogenesis model for BAVM 
and suggesting the necessity of both prenatal and parental DNA 
screening. Our data emphasise the power of intensive parallel 
sequencing in the challenging context of genetic heterogeneity 
and identified critical biological processes in the pathogenesis of 
BAVM that warrant further research and clinical attention.
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