












DISCUSSION
Here we have shown for the first time that GABRB2 is asso-
ciated with EME, which is one of the most severe EE forms
encountered in the clinic. We believe that this is also the first
report that a pathogenic mutation in a neuronal ion channel can
cause EME.

We excluded the possibility of metabolic disorders and made
a diagnosis of non-syndromic EME, although this case showed
some overlap with OS both in EEG findings and in the
seizure type, that is, generalised tonic-clonic seizure.
However, in this case, video EEG revealed myoclonus during
the burst stage of the SB pattern, hyposthenia in the suppres-
sion stage during sleep and movement of limbs in the sup-
pression stage during awakeness. At the age of 1 year and
11 months, the predominant seizure type was myoclonus and
the SB pattern was still present on EEG. Video EEG findings
and continuous myoclonus, regardless of age, were distinctly
different from OS.

In addition to GABRB2, three other genes (ERBB4,
SLC25A22 and SIK1) are associated with non-metabolic EME.
A genetic abnormality of ERBB4 was found in a patient with
EME because of a de novo reciprocal translocation t(2;6)(q34;
p25.3).3 This was not a single nucleotide variation (SNV) or
indel and the patient had some dysmorphic features. A homozy-
gous mutation of SLC25A22 was found in two siblings born to
their consanguineous parents.5 Currently, SIK1 is the only gene
of which heterozygous SNVs (including missense and nonsense
mutations) have been identified as the cause of sporadic EME
cases;4 several similar SIK1 mutations have also been found in
IS and OS. All three genes have been implicated in cell metabol-
ism and growth. To ask whether there were any relationships
between GABRB2 and these three genes, we examined protein-
protein interactions using the Search Tool for the Retrieval of
Interacting Genes/Proteins (accessed 11 March 2016) (see
online supplementary figure S2). However, we did not find any
direct relationships between GABRB2 and ERBB4, SLC25A22
or SIK1, suggesting that there is significant heterogeneity for the
aetiology of EME.

Another de novo heterozygous missense mutation
(c.236T>C; p.Met79Thr) of GABRB2 was found in a sporadic
case with mild intellectual disability and epilepsy.20 The patient
was a 12-year-old girl who had her first seizure evoked by fever
at the age of 9 months; this was followed by non-febrile GTCC
in subsequent years. Her seizures responded to clobazam.
Although her development slowed over the years, she was still
able to attend regular school. Thus, the clinical symptoms of
this patient harbouring the p.Met79Thr mutation were much
milder and quite different from those of individuals with EME.
The actual functional consequence of the p.Met79Thr mutation
has not been evaluated. It is located in the N terminus of the β2
subunit, which is one of the regions prone to accumulation of
benign variants (see online supplementary figure S3). However,
the p.Thr287Pro mutation identified in the present case seems
more deleterious than the p.Met79Thr variant, as it resides in
TM2, which forms part of the Cl− pore. This likely explains
the milder clinical phenotype associated with Met79Thr
variants.

As follow-up study, we screened three patients with EME.
This is too small a population to analyse the relationships
between mutations and phenotypes. However, no GABRB2
mutations were found in any of the 315 cases with IS (this
number includes cases in the Epi4K study)6, suggesting that the
GABRB2 mutations may be more likely to be involved in the
aetiology of EME than IS. According to the distribution of
GABRB2 benign variants we have analysed, the chances
that TM1, TM2, TM3 and TM2–TM3 loop have benign var-
iants are significantly lower than other regions (Fisher’s exact
test, p value=0, respectively). These regions are considered
‘cold’ spots for benign variants. In addition, since GABRB2 is a
small gene of 1539 nucleotides that encodes only 522 amino
acids, the rate at which de novo variants emerge is low given
that they arise randomly. Considering the low incidence of
benign variants in such ‘cold’ regions, it is likely that most muta-
tions in these regions would have a negative impact and thus
cause rare, severe or even lethal phenotypes. This hypothesis is
consistent with the fact that non-syndromic EME is one of
rarest and most severe forms of EE.

In accordance with the severe phenotype of the present case,
GABAA receptors bearing the mutated β2 subunit had several
aberrant properties in vitro. For example, cell surface expression
of p.Thr287Pro β2 subunits was significantly reduced compared
with GABAA receptors with the wild-type subunit; this was

Figure 5 Mutant β2 (p.Thr287Pro) subunits and their wild-type
partner subunits were retained intracellularly. HEK293T cells expressing
the α1 and γ2S subunits with the wild-type β2 or the mutant β2(p.
Thr287Pro) subunits (1:1:1 cDNA ratio) were immunostained for
anti-β2/3 subunits alone (A) or in combination with rabbit anti-γ2
subunits (B). The anti-β2/3 subunits were visualised with
rhodamine-conjugated IgG, while the γ2 subunits were visualised with
Alexa488-conjugated IgG. The images were acquired using a confocal
microscope with a 63× objective based on our previous protocol.17
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most evident in the homozygous mutant state (figures 4D and
5A). We also showed that γ2 subunits and mutant β2
(Thr287Pro) subunits were co-localised in cells, suggesting that
they oligomerised as protein complexes (figure 5B). These find-
ings can explain why α1β2γ2 receptors containing mutant β2
(Thr287Pro) subunits are retained inside cells. Because of the β2
subunit’s essential role in α1β2 or α1β2γ2 receptor assembly, it
is likely that cell surface expression of all the wild-type partner-
ing subunits, including α1 and γ2, is also reduced. GABAA

receptors containing the mutant β2 subunits exhibited a much
smaller peak current amplitude than those containing wild-type
β2 subunits (figure 6). Interestingly, however, the reduction of
peak current amplitude was not proportional to the reduction
in cell surface expression. Indeed, reduction in peak current
amplitude was much greater than would have been expected
based on the levels of mutant present at the cell surface. This
discrepancy suggests that, in addition to compromising subunit
protein trafficking, the p.Thr287Pro mutation also functionally
impairs the mutant GABAA receptors that do reach the surface.
This impaired channel function may be due to a dominant nega-
tive effect of p.Thr287Pro mutation in TM2, a domain that
contributes to the pore of the GABAA receptors along with cor-
responding domains of other subunits. Such deficiencies in
GABAA receptor functions likely undermine the activity of
inhibitory neuronal networks and are consistent with the severe
phenotype of EME.

Mutations in different of GABAA receptor subunits, such as
α1, β1, β3, γ2 and δ, have been identified in various epilepsy
phenotypes.6 7 15 21–33 Mutations in GABRA1 have been identi-
fied in early infantile EE and are thought to be associated with
childhood absence epilepsy (CAE) and juvenile myoclonic epi-
lepsy.15 21 24 Mutations in GABRG2 have been found in genetic
epilepsy with febrile seizures and are thought to be associated
with CAE.27 28 Mutations in GABRD have also been identified
in GEFS+32 and mutations in GABRB1 and GABRB3 were iden-
tified in LGS or IS by the Epi4K consortium.6 Although we
reported a mutation in a patient with EME, mutations in
GABRB2 may be found in EME or other epilepsy-related pheno-
types, as observed in other genes encoding GABAA receptors.
Functional studies have examined why mutations in these genes
cause various phenotypes. Recently, Janve et al34 published in
vitro functional studies of LGS-associated GABRB3 (p.D120N,
p.E180G, p.Y302C), IS-associated GABRB3 (p.N110D) and

GABRB1 (p.F246S) mutations. The mutations were identified
in the Epi4K consortium study. The LGS-associated GABRB3
(p.D120N, p.E180G and p.Y302C) mutations reduced whole-
cell currents by decreasing the probability of single channel
opening; cell surface receptor expression was normal in these
cases. In contrast, the IS-associated GABRB3 (p.N110D) and
GABRB1 (p.F246S) mutations caused subtle changes in whole-
cell current peak amplitude, but altered current deactivation by
decreasing or increasing single channel burst duration, respect-
ively. These molecular and cellular perturbations brought about
by these mutations are different from those engendered by the
p.Thr287Pro mutant we describe here. These findings suggest
that although the diverse phenotypes of patients with
epilepsy-associated diseases may depend on the specific GABAA

receptor subunit mutation, the heterogeneous clinical conse-
quences of each mutant cannot necessarily be anticipated by
in vitro studies.

Although our discovery of a de novo missense mutation of
GABRB2 in a child with non-syndromic EME confirms the het-
erogeneity of EME aetiology, it remains unclear why different
GABAA receptor subunit mutations cause a variety of pheno-
types, even though they all trigger the same receptor dysfunc-
tion (eg, reduction of Cl− current in GABAergic synapses).
Perhaps the effect of the mutation is dictated by the precise
combination of subunits in the GABAA receptor; this may effect-
ively alter the configuration of GABA receptors in the brain and
thus affect the neuronal network. To address these questions,
animal models should be used to test the phenotypic effect of
novel mutations that are discovered in subunits of the GABAA

receptor.

Web resources
The URLs for data presented herein are as follows:
▸ ANNOVAR, http://annovar.openbioinformatics.org/en/latest/
▸ 1000 Genomes, http://www.1000genomes.org/
▸ ExAC browser, http://exac.broadinstitute.org/
▸ HGVD, http://www.genome.med.kyoto-u.ac.jp/SnpDB/index.

html
▸ ESP6500, http://evs.gs.washington.edu/EVS/
▸ dbSNP142, http://www.ncbi.nlm.nih.gov/snp/
▸ SIFT, http://sift.jcvi.org/
▸ PolyPhen2 hvar, http://genetics.bwh.harvard.edu/pph2/
▸ Mutation Taster, http://www.mutationtaster.org/

Figure 6 Expression of mutant β2
(p.Thr287Pro) subunits reduces the
peak current amplitudes of
γ-aminobutyric acid-A (GABAA)
channels. (A) Representative GABA
current traces obtained following rapid
application of 1 mM GABA for 4 s to
lifted HEK293T cells voltage-clamped
at −20 mV. The current traces from
GABAA receptors containing the
mutant β2(T287P) was compared with
their respective wild-type (wt) α1β2γ2s
current traces. (B) Bar graph shows the
average peak current from cells
expressing wt and mutant GABAA
receptors. Values represent mean±SEM
(n=10 patches). Statistical differences
were determined using unpaired t-test;
**** indicates p<0.0001 compared
with the wt condition.
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▸ CADD, http://cadd.gs.washington.edu/
▸ PhyloP100way vertebrate, http://compgen.cshl.edu/phast/
▸ RefSeq, https://www.ncbi.nlm.nih.gov/refseq/
▸ STRING 10, http://string-db.org/
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