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the difference was not significant (Pdiff=0.18). Truncating vari-
ants in ATM were also associated with a higher risk for ER-posi-
tive disease (OR=3.42; 95% CI 2.33 to 5.21) than ER-negative 
disease (OR=1.59; 95% CI 0.80 to 3.00), though not signifi-
cantly so (Pdiff=0.11). There was no evidence of a difference in 
the estimated OR by ER-status for PALB2 variants (ER-positive 
OR=4.32; 95% CI 2.07 to 10.5 vs ER-negative OR=5.58; 95% 
CI 2.19 to 15.2; Pdiff=0.55).

Truncating ATM variants were more common in BC cases with 
a family history of BC among first-degree relatives (OR=2.06; 

95% CI 1.12 to 3.64, p=0.022; table 2). There was some evidence 
of an association with a positive family history for carriers of 
truncating CHEK2 variants (OR=1.51; 95% CI 0.97 to 2.28, 
p=0.070), but not for PALB2 truncation carriers (OR=0.74; 
95% CI 0.60 to 1.54, p=0.44). Bilateral BC was more common 
than unilateral disease in women with CHEK2-truncating vari-
ants (OR=3.27; 95% CI 1.66 to 5.83, p=0.0014; table 2). There 
was some evidence of an association with bilaterality for PALB2 
variant carriers (OR=2.85, 95% CI 0.86 to 6.91, p=0.080). No 
ATM truncations were found among bilateral BC cases.

Figure 2 Position and frequency of protein-truncating variants in (A) ATM, (B) CHEK2, (C) PALB2 and (D) XRCC2.
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The relative risk associated with CHEK2-truncating variants 
declined with increasing age, with estimated ORs of 3.98 for 
diagnosis before age 50, 3.37 between ages 50 and 59 and 2.12 
after age 60 (Ptrend=1.2×10−5; table 2). For ATM and PALB2 
variant carriers, there was no clear evidence for an OR trend by 
age (Ptrend=0.66 and 0.22, respectively).

risk associations for subsets of missense variants
Thirty-eight missense variants had an ExAC carrier 
frequency >0.1% (25/299 in ATM, 4/77 in CHEK2, 7/125 in 
PALB2 and 2/34 in XRCC2; see online supplementary table 
S4), and two were significantly associated with BC risk: ATM 
c.7390T>C (p.Cys2464Arg, rs55801750, OR(Arg/Cys)=0.37; 
95% CI 0.19 to 0.73, Ptrend=0.0028) and XRCC2 c.563G>A 
(p.Arg188His, rs3218536, OR(His/Arg)=0.90; 95% CI 0.83 
to 0.97, Ptrend=0.0080) (see online supplementary table S7). 
However, neither of these associations was significant after 
adjusting for multiple testing. Of note, CHEK2 c.470T>C 
(p.Ile157Thr, rs17879961) was found in 0.13% of subjects (20 
cases, four controls; see online supplementary table S5) in this 
study. The relative risk estimate (OR(Thr/Ile)=2.10; 95% CI 
0.72 to 6.14, p=0.17), although non-significant, is compatible 
with the 1.4-fold increased risk previously reported for the same 
variant in Finnish and Eastern European populations.3 35

We tested for risks associated with the aggregate of all rare 
missense variants in each gene, irrespective of position or 
predicted deleteriousness (figure 3 and table 3). We found some 
evidence of increased BC risk associated with the combined rare 
missense substitutions in ATM (OR=1.18; 95% CI 0.99 to 1.40, 
p=0.073), CHEK2 (OR=1.36; 95% CI 0.99 to 1.87, p=0.066) 
and PALB2 (OR=1.28; 95% CI 0.95 to 1.73, p=0.12), but 
not in XRCC2. Considered together, rare missense variants in 
ATM, CHEK2 and PALB2 were associated with an estimated 
OR=1.24; 95% CI 1.08 to 1.43, p=0.0025 (table 3). Vari-
ants localised within protein domains (as defined by UniProt or 
Pfam) of these three genes had a somewhat higher risk estimate 
(OR=1.45; 95% CI 1.17 to 1.80; figure 3 and table 3) than 
those outside of the annotated domains (OR=1.09; 95% CI 
0.92 to 1.31; Pdiff=0.060).

There was no evidence that risk was higher among variants 
predicted to be deleterious by CADD, PolyPhen2, SIFT or 
AlignGVGD, for any of the four genes, and no subset of vari-
ants stratified by these annotations was significantly associated 
with risk (see online supplementary table S8). Similarly, the risk 
estimate for the aggregate of rare variants in ATM, CHEK2 and 
PALB2 with deleterious functional predictions was not signifi-
cantly higher than for predicted benign variants (three genes 
combined Pdiff=0.91, 0.74, 0.71 and 0.76 for CADD, PolyPhen, 
SIFT and AlignGVGD, respectively; see online supplementary 
table S8).

Previous analyses have indicated that ATM missense variants 
within the FRAP-ATM-TRRAP (FAT) and phosphatidylinositol 
3-kinase (PI3K) domains were specifically associated with 
increased BC risk.5 6 We found evidence for increased risk for 
variants in both these domains (combined OR=1.71; 95% CI 
1.12 to 2.61, p=0.015), but estimates did not differ signifi-
cantly from those for the aggregate of all rare missense variants 
(Pdiff=0.31). Of note, c.7271T>G (p.Val2424Gly, rs28904921), 
which has been implicated in a milder Ataxia-Telangiectasia 
disease phenotype and has previously been associated with a 
substantial BC risk,5 7 8 occurred in eight cases and no controls in 
our study (figure 3 and see online supplementary table S5). After 
excluding this variant, the remaining rare missense substitutions 

in the FAT and PI3K domains in aggregate were still associated 
with BC risk (OR=1.59; 95% CI 1.04 to 2.43, p=0.040).

In PALB2, missense variants within the N-terminal BRCA1 
binding domain were most strongly associated with risk 
(OR=1.76; 95% CI 1.03 to 2.98, p=0.047). This signal was 
driven by rare missense variants (n=29) between amino acids 70 
and 300, and few of these were predicted by CADD, PolyPhen2, 
SIFT or AlignGVGD to have a deleterious effect on the protein 
(see online supplementary table S5).

non-canonical splice variants and bc risk
We also examined associations for common variants in 
non-coding regions (see online supplementary table S7). Among 
these, only CHEK2 c.320–5T>A (rs121908700; OR=13.9; 
95% CI 1.89 to 101, Ptrend=6.7×10−4) was significantly associ-
ated with risk after correction for multiple testing. This variant, 
in a non-canonical splice site, was predicted to reduce recog-
nition of the normal splice acceptor site of exon 3 and intro-
duce a new acceptor site three nucleotides upstream. At the 
protein level, this change would preserve the reading frame and 
cause the insertion of a valine residue. There was some sugges-
tion of an association for the aggregate of other non-canonical 
splice variants in CHEK2, which were found in 12 cases and 
two controls (OR=2.52, 95% CI 0.56 to 11.3, p=0.26; online 
supplementary table S5).

dIscussIon
This study, the largest experiment to date to systematically 
sequence the coding and exon-flanking regions of these genes 
in a population-based series of BC cases and controls, provides 
additional confirmation that protein-truncating mutations in 
ATM, CHEK2 and PALB2 are associated with increased BC risks. 
For ATM and CHEK2, the relative risks were higher for ER-pos-
itive than ER-negative disease, but we observed no differential 
effect by ER-status for PALB2. In contrast, XRCC2-truncating 
variants were not significantly associated with risk, but a twofold 
increased risk could not be excluded because these variants were 
very rare (13/18 575 samples; upper 95% confidence limit 4.19). 
These findings underscore the fact that, despite the large size of 
the study, the data are too sparse to accurately estimate risks for 
very rare variant classes and less common BC subtypes (eg, triple 
negative disease).

The BC risk estimates for all three of the associated genes 
were similar to estimates from smaller case–control studies and 
studies based on family-based designs (in the combined anal-
ysis of previous studies reported by Easton et al4: PALB2: meta 
analysis OR=5.3; 95% CI 3.0 to 9.4 vs table 1 OR=4.69; 95% 
CI 2.27 to 9.68; ATM: meta analysis OR=2.8; 95% CI 2.2 to 
3.7 vs table 1 OR=3.26; 95% CI 1.82 to 6.46; and CHEK2: 
meta analysis OR=3.0; 95% CI 2.6 to 3.5 vs table 1 OR=3.11; 
95% CI 2.15 to 4.69). Based on the estimated population 
frequencies and relative risks from this study, truncating vari-
ants in ATM, CHEK2 and PALB2 would explain approximately 
4% of the twofold familial relative risk of BC and approxi-
mately 2% of all BC cases. While these estimates were derived 
from a study in the UK, the comparability of the combined 
frequency of truncating variants in our study with those from 
ExAC suggests that these estimates are likely to be broadly 
applicable to other European populations. Somewhat surpris-
ingly, we observed no association between carrying a truncating 
PALB2 variant and a BC family history, but this may reflect lack 
of power: there were only 53 carriers for whom family history 
data were available.
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The vast majority of the truncating variants in this study were 
very rare: 117/119 were found in <0.1% of samples. The most 
notable exception was CHEK2 c.1100delC, which was identified 
in approximately 1.1% of subjects and accounted for 81% of 
truncation carriers in this gene. Our risk estimate for this variant 
(OR=3.18; 95% CI to 2.01 to 4.92) was somewhat higher than 
two recent analyses (BCAC: OR=2.26; 95% CI 1.90 to 2.6910; 
Danish cohort: OR=2.08; 95% CI 1.51 to 2.85).36 These 
differences might be explained by, for example, differences in 

the age distribution of the study subjects. The risk estimate for 
aggregated non-c.1100delC truncating variants in CHEK2 was 
similar to that for c.1100delC, suggesting that results for this 
founder variant can reasonably be extrapolated to other trun-
cating variants.

No individual missense variants showed evidence of associa-
tion with BC risk at p<0.001, nor did we find strong evidence 
for the aggregate of rare missense variants in a single gene. 
There was, however, an association with BC risk for all rare, 

Figure 3 Position and frequency for rare missense variants in (A) ATM (B) CHEK2 and (C) PALB2. ORs were calculated for all Pfam (ATM and CHEK2) and 
UniProt (PAlB2) domains (table 2).
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non-synonymous substitutions combined across ATM, CHEK2 
and PALB2. This risk could be mediated by a small subset of 
variants conferring a high risk, or a larger subset of variants asso-
ciated with a lower risk. We observed little evidence of associa-
tion by predicted effect severity, but there was, however, some 
suggestion that rare missense variants within functional domains 
may contribute to BC risk.

conclusIons
This report, based on a large population-based study, provides 
relative risk estimates associated with truncating variants in 
ATM, CHEK2 and PALB2. Our results confirm that risk esti-
mates for ATM and CHEK2 gene variants are similar and firmly 
within the twofold to fourfold range. PALB2 protein-truncating 
variants conferred a somewhat higher risk, supporting previous 
suggestions that specific management may be justified in PALB2 
carriers.11 The absolute risks and age-specific penetrance in 
carriers will depend on additional influences, including common 
susceptibility variants, lifestyle risk factors and family history—
considerations that can be built into more comprehensive risk 
prediction models.37 Clinically useful risk estimates for rarer 
disease subtypes and for missense variants will require studies 
that are substantially larger than the current experiment; these 
are becoming possible through large consortia and technological 
advances.
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