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ABSTRACT
Background Despite abundant evidence for
pathogenicity of large copy number variants (CNVs) in
neurodevelopmental disorders (NDDs), the individual
significance of genome-wide rare CNVs <500 kb has not
been well elucidated in a clinical context.
Methods By high-resolution chromosomal microarray
analysis, we investigated the clinical significance of all
rare non-polymorphic exonic CNVs sizing 1–500 kb in a
cohort of 714 patients with undiagnosed NDDs.
Results We detected 96 rare CNVs <500 kb affecting
coding regions, of which 58 (60.4%) were confirmed.
6 of 14 confirmed de novo, one of two homozygous and
four heterozygous inherited CNVs affected the known
microdeletion regions 17q21.31, 16p11.2 and 2p21 or
OMIM morbid genes (CASK, CREBBP, PAFAH1B1,
SATB2; AUTS2, NRXN3, GRM8). Two further de novo
CNVs affecting single genes (MED13L, CTNND2) were
instrumental in delineating novel recurrent conditions.
For the first time, we here report exonic deletions of
CTNND2 causing low normal IQ with learning difficulties
with or without autism spectrum disorder. Additionally,
we discovered a homozygous out-of-frame deletion of
ACOT7 associated with features comparable to the
published mouse model. In total, 24.1% of the
confirmed small CNVs were categorised as pathogenic or
likely pathogenic (median size 130 kb), 17.2% as likely
benign, 3.4% represented incidental findings and 55.2%
remained unclear.
Conclusions These results verify the diagnostic
relevance of genome-wide rare CNVs <500 kb, which
were found pathogenic in ∼2% (14/714) of cases (1.1%
de novo, 0.3% homozygous, 0.6% inherited) and
highlight their inherent potential for discovery of new
conditions.

INTRODUCTION
Neurodevelopmental disorders (NDDs) are a group
of conditions characterised by cognitive, neuro-
logical and/or psychiatric manifestations occurring
during the development of the nervous system.1

The various clinical entities such as intellectual dis-
ability (ID), speech and language delay, autism,
neuromotor dysfunction or epilepsy show consider-
able comorbidity and may be associated with a
variety of non-neurological features within

complex syndromes.2 3 Due to the extensive aetio-
logical heterogeneity of NDDs, the majority of
patients remain without aetiological diagnosis,
which hampers disease management, genetic coun-
selling and in-depth studies of the underlying
molecular mechanisms. With the advent of new
genomic technologies, however, diagnostic yield is
steadily improving and a rapidly growing number
of novel, aetiologically defined disorders are
delineated.
Genome-wide chromosomal microarray analysis

(CMA) for detection of copy number variants
(CNVs) is currently used as a first-tier diagnostic
approach in patients with idiopathic NDDs. The
diagnostic yield of clinically significant CNVs varies
between 5% and 20%, depending on the clinical
preselection and resolution of the array.4 Despite
their obvious higher sensitivity, the widespread use
of high-resolution arrays, however, is hampered by
their inherent burden of detecting polymorphic or
unclear variants. Indeed, tiling array studies have
revealed a huge diversity of CNVs in the general
population with an overall median length of about
2.9 kb and 95% being less than 100 kb.5

Furthermore, CNVs larger than 500 kb were
shown to occur only in about 10% of control indi-
viduals, while patients with NDDs harbour an add-
itional burden of more than 13.5% for such
CNVs.6 Accordingly, a 2010 consensus statement
on diagnostic chromosomal microarray testing
recommends a resolution of ≥400 kb throughout
the genome as a balance of analytical and clinical
sensitivity.4 Therefore, the individual significance of
rare small CNVs has not been well elucidated in a
clinical context, but is of rising interest given the
recent progress in detection of small CNVs from
whole-exome sequencing (WES) data.7–9

Therefore, in this study, we investigated the diag-
nostic relevance and inherent potential for gene
discovery of rare CNVs sizing 1–500 kb in a cohort
of 714 patients with isolated or syndromic NDDs.

METHODS
Excluding patients with large-scale chromosomal
aberrations, CNVs >10 Mb, or clinically recog-
nised recurrent microdeletion syndromes, we inves-
tigated 714 patients with NDDs with or without
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further congenital anomalies by genome-wide high-resolution
CMA. The vast majority of patients were of European origin.
Among them, 63 patients (8.8%) had obvious pathogenic CNVs
>500 kb with a median size of 3.8 Mb.

We investigated CNVs sizing 1–500 kb for their overlap with
annotated exons as well as with in-house and public control data-
bases. CNVs affecting exonic regions that were not observed in
our in-house controls or only reported once in public databases
were tested by multiplex ligation-dependent probe amplification
(MLPA) or fluorescence in situ hybridization (FISH) if not already
confirmed by inheritance pattern from trio microarray analysis.
Confirmed CNVs were individually assessed regarding literature
evidence for pathogenicity, overlapping CNVs in the DECIPHER
database,10 function and expression profiles of the affected gene(s)
and inheritance pattern. Selected candidate genes within inherited
rare CNVs were further studied by Sanger sequencing for biallelic
mutations. Five patients were further investigated for non-allelic
hits by WES. Four of these patients were selected for WES because
they had de novo CNVs affecting good candidate genes but
lacking overlapping cases at the time of analysis, and one patient
was exome sequenced because an inherited variant was present in
three affected siblings.

Microarray and confirmatory studies
DNA, extracted from peripheral blood, was analysed with
Affymetrix Genome-Wide Human SNP Array 6.0 (1.8 million
markers; 79 patients), Affymetrix Cytogenetics 2.7 (2.7 million
markers; 423 patients) and CytoScan HD (2.6 million markers;
212 patients) (Affymetrix Inc., Santa Clara, California, USA).
The average intermarker spacing was 1.6 kb for the 6.0 array
and about 1.1 kb for the two other arrays. CNVs were called if
they encompassed at least five consecutive markers resulting in a
maximum resolution of about 2 kb. The data set of each
patient’s sample was evaluated with Affymetrix Chromosome
Analysis Suite (ChAS V.1.0.1) in comparison with 670 controls
in the 6.0 array, 820 controls in the 2.7 array and 1038 controls
in the CytoScan array. Controls consisted of European and
American healthy individuals. Categorisation of CNVs by the
Affymetrix’s ChAS software among others includes confidence
values for the 2.7 and CytoScan arrays. Confidence is deter-
mined on a marker by marker basis by evaluating the concord-
ance of the log2ratio at each marker with the copy number state
assigned by the hidden Markov model (HMM). The average
confidence score of markers in gain and loss segments deter-
mines the confidence score of that segment.

Readily available kits or customised MLPA was performed
using synthetic probes for selected exons and the SALSA MLPA
kit P300 Human DNA reference-2 (MRC-Holland, Amsterdam,
The Netherlands). The MLPA module of the Sequence Pilot
3.5.2 Build 508 software ( JSI medical systems GmbH,
Kippenheim, Germany) was used to retrieve relative peak inten-
sities by normalisation to the reference probe set. Normalised
peak levels were set in relation to at least three healthy control
individuals. FISH analyses were performed using locus-specific
commercial probes according to standard protocols on meta-
phase preparations from peripheral blood.

SATB2 protein modelling
The protein was modelled with Modeller 9.9,11 based on the
crystal structure of the homologous SATB1 tetramer 12 that
exhibits 78% sequence identity.

Exome sequencing and mutation analysis
WES on genomic DNA of selected patients was performed as
described before with minor modifications.13 14 All exons and
flanking intronic nucleotides of candidate genes from CMA or
candidate nucleotide variants from WES were analysed after
PCR amplification from patient’s DNA by Sanger sequencing
using an ABI Genetic Analyzer 3730 (Applied Biosystems,
Foster City, California, USA).

Expression studies of ACOT7
Expression levels were investigated in cDNA panels from fetal
and adult human tissues using customised SYBR green qPCR for
exons 1 and 2 of ACOT7 (specific for isoform
ENST00000377855). Relative expression levels normalised to
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were set
into relation to the mean expression value of this isoform in
fetal brain.

Statistical analysis
Statistical differences for size, number of markers/size and confi-
dence value of CNVs were analysed using Mann-Whitney
U-testing and independent-samples t testing. p Values less than
0.05 were considered statistically significant.

RESULTS
Among the 714 array results, 96 aberrations below 500 kb fulfilled
the abovementioned criteria and were further evaluated (size range
2–492 kb, median 72 kb). In total, 58 out of 96 (60.4%) of these
selected CNVs were confirmed by secondary testing, while 38 of
96 (39.6%) were not confirmed and thus considered false positive
(see online supplementary table S1). False positive aberrations
were significantly smaller in size (3–181 kb, median 19 kb, mean
45.3 kb) than true CNVs (2–492 kb, median 131 kb, mean
164.7 kb) (p<0.0001; figure 1A). There was also a significant dif-
ference between the two groups regarding their confidence values
(mean of 88.9% vs 91.9%, p<0.0001; figure 1B) and marker
count (median of 20 (8–142) vs 96 (6–1040), mean of 39.9 vs
163.8, p<0.0001; figure 1C), while no significant difference was
observed for the marker count per kb within the CNV (1.5±1.14
vs 1.1±0.67, p=0.1; figure 1D). Since the 1:2 copy number
reduction in deletions is more easily detectable than the 3:2 copy
number gain in duplications, sensitivity and specificity is different
for deletions and duplications. Duplications sizing at least 183 kb
or encompassing at least 168 markers were all true positives, while
deletions were reliable if they sized at least 113 kb or encompassed
at least 52 markers.

Among 58 confirmed CNVs, 14 (24.1%) were de novo (table 1),
2 (3.4%) were homozygous and 39 (67.2%) were heterozygous
and inherited (19 from mothers and 20 from fathers). While for 12
of 14 de novo CNVs both parents were available for testing, in
another two CNVs de novo origin was assumed based on their
well-established causal involvement in severe and fully penetrant
phenotypes (one exonic deletion within the PAFAH1B1 gene
causing lissencephaly type 1 and the recurrent 473 kb microdele-
tion in 17q21.31) (table 1). For two further CNVs (3.4%), patterns
of inheritance could not be completely tested because the fathers
were not available, but due to familial recurrence they were consid-
ered likely inherited (see online supplementary table S2). One inci-
dental finding (DMD deletion) was not tested in the mother.

De novo CNVs
Six de novo or likely de novo CNVs were clearly pathogenic
affecting the recurrent microdeletion region in 17q21.31
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(detected in two cases), well-characterised OMIM morbid genes
(CASK, CREBBP, PAFAH1B1) or the recently described SATB2
locus (table 1). For two further de novo CNVs affecting single
genes (MED13L, CTNND2), similar cases were identified in the
DECIPHER database (http://decipher.sanger.ac.uk/). The 17 kb
out-of-frame de novo deletion encompassing exon 2 of
MED13L (MIM *608771) in patient 56366, together with over-
lapping cases, were instrumental to define a recognisable hap-
loinsufficiency syndrome that we reported and discussed in
detail elsewhere.13 The novel condition caused by CTNND2
haploinsufficiency is described for the first time below. We also
report a special tooth phenotype found in our patient with
SATB2 defect. Additionally, we discuss a de novo variant limited
to the DNM3 gene, which is the candidate critical gene in
1q24-q25 deletions, as well as two de novo CNVs classified as
likely benign after identification of pathogenic mutations by
WES.

Novel CTNND2-related phenotype defined by patient 62563 with
113 kb deletion and overlapping cases
CTNND2 (MIM *604275) encodes δ-catenin, which functions
as a regulator of neuronal migration15 and maintenance of den-
drites and dendritic spines in mature cortex.16 It was mapped to
the cri-du-chat syndrome critical region in chromosome 5p15.2
and was considered responsible for severe ID in typical
cri-du-chat syndrome patients with terminal 5p deletions.17

However, extended deletion mapping indicated that interstitial
deletions restricted to the ID critical region 2 (MRII) including
the CTNND2 locus produce a milder level of intellectual
impairment.18 CNVs encompassing CTNND2 have been impli-
cated in autism (one deletion, de novo),19 cerebral palsy (one
duplication including the first exon of CTNND2, maternally
inherited)20 and schizophrenia (one duplication affecting seven
genes including CTNND2).21

CMA in our patient revealed a 113 kb de novo out-of-frame
deletion encompassing exons 4–7 of CTNND2. Sanger sequen-
cing in the patient did not reveal an additional pathogenic
point mutation of the gene. The girl was born spontaneously
at term with normal measurements and no complication to
highly educated unrelated parents. She had no remarkable
health issues and developmental milestones and growth para-
meters were within normal limits (table 2). Physical examin-
ation revealed deep set eyes, prominent cheeks, narrow
eyebrows, short inner canthal distance (ICD 2.7 cm, 2nd
centile), low-set, slightly backwards rotated ears, and a bulbous
nose with prominent columella. She had mild clinodactyly of
the fifth finger, which was also present in the healthy brother.
She was referred to formal developmental testing at age 8 years
because of behavioural issues and was diagnosed with border-
line ID (WISC-IV, full scale IQ 77). She showed a dissociated
cognitive profile with better language (vocabulary, comprehen-
sion, reading) than non-verbal functions (visual perception,

Figure 1 Comparison between true versus false positive status of small copy number variants (CNVs) detected by chromosomal microarray analysis
(CMA) and their size, confidence value, marker count and marker count per kb. (A) False positive CNVs were significantly smaller in size (3–181 kb,
median 19 kb, mean 45.3 kb) than true CNVs (2–492 kb, median 131 kb, mean 164.7 kb) (p<0.0001). (B) There was also a significant difference
between the two groups regarding their confidence values (mean of 88.9% vs 91.9%, p<0.0001) and (C) marker count (median of 20 vs 96, mean
of 39.9 vs 163.8, p<0.0001). (D) No significant difference was observed for the marker count per kb within the CNV (1.5±1.14 vs 1.1±0.67, p=0.1).
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Table 1 Clinical and genetic features of patients with candidate de novo CNVs <500 kb sorted by descending size

Patient
ID

Age*
(years) Gender Phenotype Aberration

Chromosome
band Genome coordinates

Size
(kb)

Confidence
value (%)

Marker
count

Affected
gene(s) Validation Pathogenicity

52253 5 M Developmental delay, marked
hypotonia, agenesis of corpus
callosum and facial
dysmorphic features

Deletion
(heterozygous)

17q21.31 hg18, chr17:
41049320-41522088

473 N/A 329 9 genes
including
MAPT

MLPA/-(parents
N/A, likely de
novo)

Pathogenic (recurrent
microdeletion syndrome)58

69234 2 F Developmental delay,
hypotonia, microcephaly and
minor morphological
abnormalities

Deletion
(heterozygous)

Xp11.4 hg19, chrX:
41339667-41811516

472 91 1040 CASK,
GPR34 and
GPR82

MLPA/de novo Pathogenic (phenotypic
spectrum associated with
CASK loss of function has
been described)59

71264 2 M Developmental delay,
hypotonia, mild facial
dysmorphic features and
stridor

Deletion
(heterozygous)

17q21.31 hg19, chr17:
43703800-44163085

459 90 857 9 genes
including
MAPT

MLPA/de novo Pathogenic (recurrent
microdeletion syndrome)58

59248 4 F Developmental delay, severe
hypotonia since birth,
refractory epilepsy, facial
dysmorphic features and
oedematous hands and feet
with tapering fingers

Deletion
(heterozygous)

1q24.3 hg18, chr1:
170135864-170505998

372 N/A 244 DNM3 FISH/de novo VOUS (WES of the patient and
both parents did not reveal
any obvious candidate gene
mutation. DNM3 encodes
dynamin 3, involved in
vesicular transport)

71156 1 F Developmental delay,
microcephaly and facial
dysmorphic features

Deletion
(heterozygous)

16p13.3 hg19, chr16:
3788867- 3935836

147 91 353 CREBBP MLPA/de novo Pathogenic (OMIM gene for
Rubinstein–Taybi syndrome)48

62848 5 F Developmental delay,
hyperactivity and microcephaly

Duplication
(heterozygous)

12q24.23 hg18, chr12:
117061815- 117183853

122 N/A 71 TAOK3 and
PEBP1

MLPA/de novo Likely benign (pathogenic
heterozygous mutation in
SHANK2: c.2669_2670insC (p.
P891Sfs*32) was found in this
patient by WES)

62563 11 F Learning difficulties, short
attention, deficits in
social-emotional behaviour
and mild facial dysmorphic
features

Deletion
(heterozygous)

5p15.2 hg18, chr5:
11431816- 11545236

113 N/A 99 CTNND2 MLPA/de novo Pathogenic (implicated in the
ID phenotype of cri-du-chat
syndrome.17 Further patients
are discussed in this paper)

72125 7 F Developmental delay, and mild
facial dysmorphic features

Duplication
(heterozygous)

10p14 hg19, chr10:
7932363-8033508

101 90 108 TAF3 MLPA/de novo VOUS (TAF3 encodes TAF3
RNA polymerase II, TATA box
binding protein-associated
factor)

70229 3 M Global developmental delay
with prominent speech delay,
truncal ataxia, agenesis of
corpus callosum and repaired
cleft palate

Deletion
(heterozygous)

12q24.33 hg19, chr12:
132552537-132623611

71 90 48 EP400,
EP400NL,
and DDX51

MLPA/de novo VOUS (there is patient 262376
in Decipher database with a
duplication encompassing the
same genes)

43552 19 M Intellectual disability (ID),
speech problems, spastic
movement disorder and tall
stature

Deletion
(heterozygous)

16p13.3 hg18, chr16:
4986264- 5046682

60 89 53 NAGPA,
C16orf89,
and SEC14L5

MLPA/de novo VOUS (a smaller deletion
including only SEC14L5 and
NAGPA is present in 1/1038 of
a world-wide control cohort by
Affymetrix)

70886 4 M 2q33.1 32 89 68 SATB2 MLPA/de novo
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abstract reasoning). She also showed short attention span, poor
executive functioning and impaired working memory. The cog-
nitive profile remained stable at follow-up. Although immature
social-emotional behaviour was described, formal signs of
autism were not present.

We found three further patients with exonic deletions limited
to CTNND2 via the DECIPHER database (table 2, figure 2).
These three deletions were inherited and for two transmitting
parents low normal IQ was recognised. Because exonic
CTNND2 deletions are not reported in the normal population
databases and since these patients as well as two of the three
transmitting parents share borderline low IQ or mild ID with or
without autistic behavioural problems, we assume that
CTNND2 haploinsufficiency is causing the neurodevelopmental
features in these patients. Given the mild phenotype of the
patients, transmission by seemingly normal parents may be
explained by clinical variability or lack of formal cognitive
testing. The progressive neurological signs in patient 4
(DECIPHER 271234), however, may be caused by an additional
unidentified disorder.

SATB2 intragenic 32 kb duplication in patient 70886 with ID and
double row of upper incisors
SATB2 (special AT-rich sequence binding protein 2; MIM
*608148) is a DNA-binding protein that regulates gene expres-
sion and corticocortical connections in the developing cerebral
cortex and craniofacial patterning.22 23 De novo interrupting
translocations, microdeletions and mutations of SATB2 have
been described in patients with ID, behavioural problems, sei-
zures and craniofacial anomalies with or without cleft
palate.14 24–28 The duplication detected by CMA in our patient
affects exon 4 (c.170-?_346+?; p.Gly57_Gln115dup)
(ENST00000457245) and is predicted by homology modelling
to disturb protein tetramerisation, which plays an important
role for long-range chromatin organisation and coordination in
gene regulation (figure 3A).12

This patient was a 4-year-old boy born at term with normal
measurements (51 cm; 3330 g) to healthy unrelated parents.
After birth hypotonia, feeding difficulties and a cleft soft palate
were noted and at age 1 year a double row of upper incisors
became evident (figure 3B). At age 3 3/12 years, he was remark-
ably hypotonic and had borderline microcephaly (OFC 49 cm,
3rd centile) with normal height and weight. The face was long,
flat and hypotonic with hypersalivation, an impression of mild
hypertelorism, down-slanting palpebral fissures, mild ptosis, flat
nasal bridge, anteverted nares, long flat philtrum and mild
micrognathia. He had large ears, low posterior hair line, mild
pectus excavatum, mildly wide spaced mammillae, bilateral 5th
finger camptodactyly, mild cutaneous syndactyly of toes 2 and
3, and a 1×1.5 cm depigmented spot on the leg. The facial fea-
tures of this patient resembled patient 1 with a SATB2 deletion
published by Rosenfeld et al.26 Psychomotor development was
mildly delayed with walking age 18 months and fine motor pro-
blems, but expressive speech development was remarkably
delayed with few single words, hyperactivity and stereotypic
movements at the age of 4 years.

Although a doubled row of upper incisors has not been previ-
ously described in SATB2 defects, some patients had tooth
abnormalities such as missing teeth, abnormally shaped and
crowded teeth, malocclusion and diastema. Moreover, in E17.5
Satb2−/− mouse embryos the incisor teeth, which express high
levels of SATB2 in the wild type, were missing, while the
molars, which do not express SATB2 in the wild type, were
unaffected.23
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Table 2 Summary of the patients with deletions affecting CTNND2

Girirajan et al. 2013
(patient 12289.p1) Patient 1 (decipher 284528) Patient 2 (decipher 248402)

Patient 3 (decipher
269928) Patient 4 (decipher 271234)

Gender N/A Female Female Male Male
deletion
affecting
CTNND2

93 kb deletion, exons
4–9 in-frame (hg18,
chr5:
11398907-11491980)

113 kb deletion, exons 4–7
out-of-frame (hg18, chr5:
11431816-11545236)

413 kb deletion, exons 2–8
out-of-frame (hg19, chr5:
11349694-11763030)

479 kb deletion, exons
1–3+50UTR out-of-frame/
haploinsufficiency (hg19,
chr5:
11505316-11985200)

154 kb deletion, exon 3
out-of-frame (hg19, chr5:
11432332-11587173)

Inheritance De novo De novo (parents had no
specific features and had
higher education)

Paternal (father had problems
with concentration. He
finished lower vocational
technical school)

Maternal (mother had no
specific features)

Maternal (mother had low
normal intelligence)

Additional rare
CNVs of coding
region

N/A – – 452 kb paternally
inherited duplication
encompassing WSB1
(hg19, chr17:
25403446-25854990)

–

Weeks of
gestation

N/A Term 40 (C-section for breech
position)

37.5 42

Birth
measurements

N/A BW: 3660 g (50th–90th
centile), BL: 50 cm (50th–90th
centile) and OFC: 35 cm
(50th–90th centile)

BW: 4290 g (>97th centile),
BL: 54 cm (75th–90th centile)

BW: 3700 g (75th–90th
centile), BL: 51 cm
(50th–75th centile), OFC :
36 cm (75th–90th centile)

BW: 4280 g (75th–90th
centile) (1.2 SD)

Facial features N/A Deep set eyes, prominent
cheeks, narrow eyebrows,
short inner eye distance (ICD
2.7 cm, 2nd centile), deep,
slightly backwards rotated
ears, and a bulbous nose with
prominent columella. She had
mild clinodactyly of the fifth
finger, which was present in
the healthy brother too.

Open mouth, ptosis,
downslanted palpebral
fissures, anteverted nares,
malar flattening, macrodontia,
myopathic facies, short nose,
abnormality of globe size

High arched palate Pigmented nevus on right
cheek, mild craniofacial
dysmorphism with deep set
eyes and prominent cheeks

Developmental
milestones

N/A Walking at 16 months, first
words at 8–9 months, 3-word
sentences at 18 months

Walking at 24 months,
2-word sentences at
36 months

Normal initial motor
development, but fine
motor problems,
difficulties with social
skills, delayed language

Unaided sitting at 12 months,
walking at 36 months

IQ N/A WISC-IV at age 8-year IQ 77,
with better language than
nonverbal functions, the
cognitive profile remained
stable at follow-up

SON-R at age 4- year IQ 72 The last WISC IV
evaluation results were
VCI=74, PRI=67, PSI=86,
WMI=67

Attends special school for
children with both physical
and intellectual disability. At
15 years has receptive and
expressive language skills
equivalent to 5 years old

Neurologic
manifestations

Autism Short attention span, poor
executive functioning and
impaired working memory, and
immature social-emotional
behaviour

Autism, mild intellectual
disability, muscular
hypotonia, nasal speech

Learning difficulties
behavioural problems,
diagnosis of autism
spectrum disorder

Ataxic cerebral palsy was
diagnosed at age 3 years. At
15 years, he had marked axial
hypotonia with hyperreflexia,
rigidity on passive movements
of distal joints and difficulty
in initiating movement.
Recent unexplained loss of
motor skills

MRI N/A N/A N/A N/A New changes in internal
capsule and basal ganglia at
the age of 15 years

Latest
measurements

N/A At 10 years 4 months, her
weight, height, and head
circumference were 39.6 kg
(93rd centile), 145.9 cm (96th
centile) and 52 cm (46th
centile), respectively. Father’s
height was 189 cm and
mother’s 169 cm.

At 11 years 5 months, her
weight, height, and head
circumference were 60 kg
(+1.9 SDS), 167.6 cm (+2.3
SDS) and 55 cm (+0.9 SDS),
respectively. Father’s height
was 180 cm.

He was tall (+3 SD) with
OFC=56 cm (+2.5 DS).
Father’s height was
189 cm. Mother’s height
was 160 cm.

Unable to obtain height as
wheelchair bound. OFC at age
of 16.4 years was 52.9 cm
(−2.2 SD).

Other features N/A – Hyperextensibility of the
finger joints, slender finger,
joint laxity, narrow foot, mild
scoliosis, accelerated skeletal
maturation, long phalanx of
finger

Genu valgum Delayed puberty

BW, birth weight; BL, birth length; CNV, copy number variant; ICD, inner canthal distance; OFC, occipitofrontal circumference; WISC-IV, Wechsler Intelligence Scale for Children-IV.
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DNM3 intragenic 372 kb deletion of uncertain significance
in patient 59248 with epileptic encephalopathy
DNM3 (MIM *611445) functions in endocytosis of presynaptic
vesicles after release of neurotransmitter and postsynaptic recep-
tors,29 and there is evidence for its interaction with mGluR5
and Homer and its role in dendritic spine morphogenesis.30

DNM3 was considered the critical gene for the neurodevelop-
mental features in patients with larger deletions of 1q24q25,
which in addition to severe cognitive disability show a recognis-
able phenotype including prenatal-onset microcephaly, growth
deficiency, small hands and feet with distinctive brachydactyly
and distinctive facial features.31

CMA showed a 372 kb de novo deletion within the gene
DNM3, encompassing exons 2–15 in our patient. This girl was
referred for severe hypotonia since birth, profound developmen-
tal delay, refractory seizures, oedematous hands and feet with
tapering fingers and facial dysmorphism. Because of severe epi-
leptic encephalopathy and oedema but absence of typical fea-
tures such as cerebellar and optic atrophy, a clinical diagnosis of
progressive encephalopathy with edema, hypsarrhythmia and
optic atrophy (PEHO)-like syndrome was proposed. However,
CNV analysis and Sanger sequencing of DNM3 in eight similar
patients with PEHO or PEHO-like syndrome did not reveal any
pathogenic finding. This deletion remains of uncertain signifi-
cance because seizures are only reported in a minority of
patients with larger 1q24-q25 deletions and because of the mild
phenotype consisting of attention deficit hyperactivity disorder
(ADHD) and autism in DECIPHER patient 288412 with a
400 kb deletion limited to DNM3.

WES of our patient and both healthy parents revealed a het-
erozygous de novo missense mutation in ADAM7 (c.190A>G;
p.K64E; chromosome 8g.24304732A>G). Since no germline
mutation has been reported so far for ADAM7, the relevance of
this finding remains also unclear.

Likely benign 19 kb de novo deletion affecting TH1L (NELFCD)
and CTSZ in patient 45333
Both genes (MIM *605297 and *603169) are widely expressed
in fetal and adult tissues32 and TH1L interacts with A-Raf
kinase, an important intermediate of the growth factor
Ras-MAP kinase pathway.33 CMA revealed a 19 kb de novo
deletion partially affecting TH1L and CTSZ. This boy had
macrocephaly, severe ID, hypotonia, haemangioma of the upper
lip, bilateral postaxial foot polydactyly and obesity. There was
no strong evidence for the pathogenicity of this aberration, and
larger overlapping deletions reported in the DECIPHER data-
base (eg, numbers 250209 and 250318) had a divergent pheno-
type of short stature and microcephaly. Eventually WES
revealed the recently reported PIK3CA, c.2740G>A, p.G914R
mutation in mosaic form causing the megalencephaly capillary
malformation syndrome,34 which fully explains the patient’s
phenotype. The mutation was confirmed by Sanger sequencing
in blood (∼7%) and saliva (∼16%) and occurred de novo.

Likely benign 122 kb de novo duplication affecting TAOK3 and
PEBP1 in patient 62848
TAOK3 encodes the serine/threonine-protein kinase TAO3 that
acts as a regulator of the p38/MAPK14 stress-activated MAPK
cascade involved in the G2/M transition DNA damage check-
point.35 PEBP protein is an inhibitor of the Raf/MEK/MAP
kinase signalling cascade and functions in the regulation of cell
cycle.36 Therefore, both genes have critical roles in the regula-
tion of cell cycle and can be dosage sensitive. CMA showed a de

novo 122 kb duplication within TAOK3 and PEBP1 (MIM
*604591) in a girl with microcephaly, mild developmental delay
and hyperactivity. So far, no polymorphic variants overlapping
with this duplication have been reported and a smaller duplica-
tion limited to TAOK3 was reported in DECIPHER (#250362)
in a patient with microcephaly and developmental delay, but
was reported as inherited from a healthy parent. Eventually
WES revealed the SHANK2 (ENST00000338508) de novo
c.2669_2670insC mutation, which causes a frameshift introdu-
cing a premature stop codon (p.P891Sfs*32), and explains the
patient’s phenotype. However, we cannot exclude a multiple hit
aetiology in this patient.

Homozygous CNVs
We found two rare homozygous deletions with heterozygous
healthy parents (see online supplementary table S2). One, an
83 kb homozygous deletion on 2p21 in two siblings with
hypotonia-cystinuria syndrome without cystinuria, further
refined the genotype–phenotype correlation in this known ID
region and was described and discussed in detail elsewhere.37

The second was a 7 kb homozygous frameshift deletion
encompassing the first exon of ACOT7 (isoform
ENST00000377855) in a patient with ID, epilepsy and abnor-
mal behaviour. So far no human disorder has been described for
any of the ACOT proteins. This boy was born at 40+9 weeks of
gestation with normal measurements (3780 g, 53 cm). At age
16 months, he developed a generalised mixed myoclonic-tonic
absence seizure disorder. Anticonvulsive treatment was discon-
tinued at age 8 years without recurrence of seizures. Since age
15 years, episodes with ravenousness, extreme fatigue and fluc-
tuating alertness were noted and led to cardiologic evaluation
without abnormal findings. He had normal body measurements,
micrognathia and mild ID with an IQ of 55–65, hyperactivity
and abnormal behaviour and spoke in simple sentences but
could not take care of himself.

ACOT7 (MIM *602587), formerly known as brain acyl-CoA
hydrolase (BACH), encodes acyl-CoA thioesterase 7 and is
involved in fatty acid metabolism with other ACOTs.38 ACOT7
encodes distinct isoforms with tissue-specific expression and
subcellular locations and is strongly expressed in human brain
cells such as pyramidal cells in the cerebral cortex, as well as in
testes and some other tissues.39 40 Although lowered levels of
ACOT7 in patients with suspected mitochondrial fatty acid oxi-
dation disorders have been shown41 and a derangement of the
ACOT7 protein has been detected in the hippocampus of
patients with mesial temporal lobe epilepsy,42 so far, no muta-
tion or CNV within ACOT7 was linked to any particular dis-
order. Recent studies of ACOT7 conditional central nervous
knockout mice (KO) showed that ACOT7 counter-regulate fatty
acid metabolism in neurons and protects against neural lipotoxi-
city. Interestingly, the KO mice exhibited behavioural hyperexcit-
ability after fasting when circulating free fatty acids from
lipolysis are elevated,43 which resembles the episodes of raven-
ousness and fatigue observed in our patient.

In our patient, the homozygous frameshift deletion within the
alternatively spliced first exon of isoform ENST00000377855
most likely results in the depletion of its transcription. In other
isoforms, however, it is intronic or in the 5’UTR and the pos-
sible effect on transcription or splicing remains uncertain. To
further elucidate the involvement of this ACOT7 isoform in the
patient’s phenotype, we investigated its expression in cDNA
panels from fetal and adult human tissues and found the highest
levels in adult pancreas, testis, brain, lung, prostate and colon
(see online supplementary figure S1). Since we found no
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expression in control lymphoblasts, we were not able to
perform expression studies in the patient. Given the similarity
to the KO mice phenotype and the segregation of the deletion
in the family with heterozygosity in both healthy parents and
the healthy brother and absence of the deletion in the healthy
sister, it is likely that the homozygous deletion is pathogenic.
Since the same deletion has been observed in the heterozygous
state in 1 out of 1038 worldwide Affymetrix controls (∼0.1%),
in 1 out of 451 controls by Conrad et al5 (∼0.2%) and in 13
out of 1151 of 1000 Genomes Consortium controls (∼1.1%),44

the homozygous disease frequency would be ∼0.000025–
0.003%, which is in line with a very rare disorder (1:33 000–
4 000 000).

Inherited heterozygous CNVs
Four inherited CNVs were considered as pathogenic or likely
pathogenic affecting genes with reported pathogenic rare de
novo/inherited deletions (AUTS2, NRXN3), deletions of a gene
observed only in ADHD patients but not in controls (GRM8) or
the recurrent microdeletion/duplication region in 16p11.2.
These CNVs are described and discussed in the supplementary
information. Six of the familial CNVs were found to have some
evidence for potential pathogenicity but remained with uncer-
tain significance (VOUS) including one duplication in 20p13
and five deletions affecting STPG2 (C4orf37), SUCLG2, PARK2,
NDUFV3 and WDR4, and TPK1, respectively.

Eight CNVs were considered likely benign because of the
identification of independent pathogenic mutations fully
explaining the phenotype or observation of similar CNVs in
new control data (see online supplementary table S2). For the
rest of inherited CNVs (22), there was no evidence in favour or
against pathogenicity (see online supplementary table S1).
Selected genes of 10 familial CNVs suspected for recessive
pathogenicity were sequenced for a second hit in the trans
allele, which was negative for any pathogenic finding (see online
supplementary tables S2 and S3).

Incidental findings related to NDDs
Two of the CNVs found in our cohort, both deletions, were
classified as incidental findings related to NDDs. The first CNV
was a 203 kb deletion within the DMD gene (hg18, chrX:
31598556-31801270) (in-frame, exons 49–53 (isoform
ENST00000357033), c.7099-?_7872+?del) in a 4-year-old
male patient with developmental delay, ptosis and some other
facial features, but no sign of muscular dystrophy and normal
muscle enzymes. Despite the recent report of X-linked ID in a
family with a 3 bp DMD deletion affecting the Dp71 isoform
without muscular dystrophy,45 the deletion in our patient does
not affect this isoform and is less likely to explain his pheno-
type. Therefore, it was considered as an incidental finding with
prognostic value for the patient.

Figure 2 Schematic representation of CTNND2 deletions detected in patients. Patient 1 (DECIPHER #284528) with a de novo deletion of exons
4–7, patient 2 (DECIPHER #248402) with a paternally inherited deletion encompassing exons 2–8, patient 3 (DECIPHER #269928) with a maternally
inherited deletion of exons 1–3 and 5’UTR and patient 4 (DECIPHER #271234) with a maternally inherited deletion of exon 3.

Figure 3 Structure of the Satb2 tetramerisation domain and upper incisors in the patient with intragenic SATB2 duplication. (A) The four subunits
of the tetramer are shown in different colours and those parts, which are duplicated in the mutant, are shown in space-filled presentation. This
duplication will affect the interfaces between the dimers that form the tetramer (black arrows). Thus, the intragenic duplication is expected to
hamper formation of the tetramer, which was suggested to play an important role for long-range chromatin organisation and coordination in gene
regulation.12 (B) Double row of upper incisors in the patient with 32 kb pathogenic duplication within SATB2 at age 3 3/12 years.
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The second CNV was a 380 kb maternally inherited deletion
encompassing 10 genes (hg18, chrX: 70006030-70385683) in a
female patient later diagnosed with a truncating mutation in
ASXL1 confirming the clinical diagnosis of Opitz-Bohring syn-
drome.46 However, the deletion contained several known
X-linked recessive disease genes and the patient, carrier mother
and grandmother showed 98% skewing of X-inactivation.
Therefore, it was considered as an incidental finding with pre-
dictive value of pathogenicity in males for future pregnancies.

DISCUSSION
Recent genome-wide studies have shown a significant increase in
the burden of rare exonic CNVs in patients with autism spec-
trum disorder (ASD) compared with controls7 8 and global
burden of rare genic deletions of <500 kb compared with all
CNVs,47 but did not investigate the clinical significance of indi-
vidual rare CNVs. In this study, we investigated all rare exonic
CNVs sizing 1–500 kb detected by genome-wide high-resolution
CMA for genetic diagnosis and gene discovery in a large cohort
of 714 clinically well-characterised patients with NDDs. 60.4%
of such CNVs were confirmed by secondary testing and as
expected, false positive aberrations were significantly smaller
(median 19 vs 131 kb) in size. However, three out of seven true
CNVs sizing 1–10 kb, but only 8 out of 35 sizing 100–500 kb
were pathogenic, indicating the highest fraction of pathogenic
CNVs in the smallest size range (figure 4A). Therefore, genome-
wide exon-level CNV testing would be desirable and may be
achievable by next-generation sequencing in the near future.

Although both intragenic deletions and duplications can lead
to out-of-frame defects and gene haploinsufficiency, frequency
of intragenic deletions appears to be higher than duplications. A
study with targeted exon-level CNV analysis in 3018 patients
with suspected Mendelian disorders illustrated a CNV detection
rate of 3.3% of which 96 were deletions and only 2 were dupli-
cations.48 Recent data from WES have also indicated the enrich-
ment of 1–30 kb deletions in individuals with ASD.7

Accordingly, 12 of our 41 confirmed rare small deletions (29%)
were pathogenic, but only 2 of 17 confirmed rare duplications
(12%) were categorised as such, but the difference did not reach
statistical significance.

With reference to inheritance pattern (figure 4B), 24% of
confirmed small CNVs were de novo or likely de novo, but only
57% of these were considered disease causing. Rare CNVs
occurring de novo are more likely to be pathogenic, and consen-
sus guidelines suggest de novo CNVs to be considered for

causality of the abnormal phenotype.4 However, there are few
reported instances in which candidate pathogenic de novo
CNVs <500 kb eventually appeared to be benign, indicating
that their causality should not be overestimated.49 Likewise we
found 2 of 14 (14%) de novo rare CNVs <500 kb to be likely
benign because of the identification of pathogenic mutations in
known disease genes by WES in the corresponding patients,
fully explaining their phenotypes (table 1; patients 62848 and
45333). For the two pathogenic de novo CNVs affecting novel
disease loci, overlapping CNVs in patients with similar pheno-
types were identified via the DECIPHER database. While we
described in detail the novel syndrome associated with MED13L
haploinsufficiency elsewhere,13 the phenotype of borderline low
IQ with or without autistic features or developmental delay
associated with CTNND2 deletions is first described here.

In our cohort, 71% of confirmed small CNVs were heterozy-
gous and familial. Recent studies indicated enrichment of inher-
ited CNVs in patients with mild clinical phenotype50 and
sporadic ASD cases,8 as well as lower cognitive performance in
controls carrying rare CNVs.51 However, clinical interpretation
of such CNVs in individual cases remains challenging. We found
four inherited heterozygous deletions (10% of confirmed famil-
ial heterozygous CNVs) to be pathogenic or likely pathogenic
based on the parent’s phenotype and/or reported cases in the lit-
erature. Notably, eight (20%) of the inherited small CNVs
could be categorised as likely benign after finding clearly patho-
genic point mutations in the patients or observing similar CNVs
in new control data (see online supplementary table S2) and the
rest remained without clear evidence (see online supplementary
table S1; figure 4B).

In addition, our findings underline the importance of homo-
zygous disease causing CNVs <500 kb (∼0.3% of total cohort)
in a genome-wide evaluation. Pathogenic homozygous CNVs
are more commonly described in consanguineous families, but
limited data are available on the genome-wide estimate of these
CNVs with a reported frequency of ∼0.009% in a cohort of
diverse clinical phenotype52 and ∼0.5% in 194 patients with
ASD.53 Here, both of our homozygous deletions were detected
in patients of non-consanguineous parents of Swiss origin, the
homozygous 2p21 deletion at the border of a 7.6 Mb loss of
heterozygosity (LOH) region37 and the ACOT7 exonic homozy-
gous deletion flanked by two heterozygous single-nucleotide
polymorphism within a 1.7 Mb interval. CNVs or mutations
affecting ACOT7 have not been reported before; however, given
the familial segregation and the overlap with the reported KO

Figure 4 Distribution of copy
number variants (CNVs) <500 kb in
different size ranges and categories.
(A) Frequency of pathogenic or likely
pathogenic CNVs (pathogenic) versus
other CNVs in four size ranges is
shown. (B) Frequency of CNV
inheritance pattern in five categories:
pathogenic or likely pathogenic
(pathogenic), likely benign (benign),
variants of uncertain significance
(VOUS), CNVs with no evidence in
favour or against their pathogenicity
(no evidence), and incidental findings
related to NDDs (incidental). De novo
or likely de novo CNVs are indicated as
DN, inherited or likely inherited as IN,
and homozygous as HO.
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mice phenotype, we suggest that ACOT7 indeed causes a novel
autosomal-recessive disorder characterised by mild ID, epilepsy
and episodes of ravenousness and fatigue.

In our cohort, the diagnostic yield of larger pathogenic CNVs
sizing 500 kb–10 Mb was 8.8%, which is slightly lower than
reported data and may be explained by the clinical preinvestiga-
tion of all patients, which allowed 13 cases with recognisable
microdeletion syndromes to be diagnosed by targeted testing
(deletion 22q11.2, Williams–Beuren syndrome, Smith–Magenis
syndrome). These diagnoses, which are frequently reported in
CMA studies, would have added another 1.8% to this cohort
seen in our genetic clinic and we also excluded patients with
potentially cytogenetically visible CNVs larger than 10 Mb. The
overall added value of rare CNVs <500 kb to the diagnostic
yield was ∼2% (1.1% de novo, 0.3% homozygous, 0.6% inher-
ited). Of note, 79% of this diagnostic yield represented CNVs
overlapping with known disease loci while 21% affected novel
loci and were contributory to delineation of novel disease entities
in the course of this study. In addition, two of the confirmed
small CNVs (0.3% of patients) represented incidental patho-
logical findings not related to the patient’s current phenotypes.
Our finding of 11 out of 714 patients (1.54%) with small patho-
genic CNVs in known disease loci is higher than the 0.4–1%
observed in previous studies investigating more than 300 patients
each using lower resolution Agilent 44k, 105k, 180k, 244k
arrays or custom-designed exon-targeted arrays.54–57

In summary, including the 0.4% of patients with pathogenic
CNVs in novel disease loci, our results verify the diagnostic rele-
vance (∼2%) of genome-wide rare CNVs <500 kb and their
inherent potential to discover new conditions enabling better
characterisation of NDDs.
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