


















Complex rearrangements
We investigated 15deletions found in complex rearrangements
for the parental origin and all turned out to be paternal. In
patients 47, 50, 51 and 53, paternity was confirmed using
microsatellite markers for both deletions present in each
patient, but in patient 58 for only one of the four deletions.
Therefore, the aforementioned propensity of male germ cells to
generate reciprocal translocations associated with cryptic
deletion is further reinforced by the findings that all 11/16
CCRs associated with deletion that were analysed for the
parental origin were found to be paternal. As constitutional
chromosome abnormalities such as translocations or marker
chromosomes may cause male infertility with arrest very early
in meiosis I,26–29 it seems likely that the CCRs occurred at this
point and not during the previous spermatogonial proliferation,
when the mechanisms for recognising and correcting or
eliminating cells with errors would have blocked the cells as
soon as meiosis began. Confirming this, CCRs are rarely
transmitted through spermatogenesis and are frequently
ascertained by male infertility.8

It is important to stress that none of the deletion or
translocation breakpoints of our CCRs coincided with genomic
regions known to be associated with instability such as
segmental duplications.30 Moreover, the narrowing of 22
breakpoints to a few hundred base pairs in 7 patients and the

Figure 4 Chromosome painting or subtelomeric fluorescence in situ
hybridisation (FISH) in patients 50–53 and 55. (A–D) Patient 50,
chromosome painting. (A) Chromosomes 1, 16 and 19 in red, blue and
green, respectively; 1p31R pter is translocated to 11q14 [der(11)]; der(1)
shows distal p portion unstained. (B) Chromosomes 3, 15 and 17 in red,
blue and green respectively; 3q25R qter is translocated to 1p31 [der(1)];
der(3) shows distal portion unstained. (C) Chromosomes X, 6 and Y in red,
blue and green, respectively; 6q21 is unstained due to the insertion of
11q13. (D) Chromosomes 9, 11 and 22 in red, blue and green,
respectively; 11q13 is inserted within 6q21 [der(6)] and 11q14R qter is
translocated to 3q25 [der(3)]; der(11) shows distal q portion unstained.
Array comparative genome hybridisation (CGH)found two deletions at
6q21 and 11q14.3–q21 (table 7). (E–G) Patient 51, chromosome painting.
(E) Chromosomes 1, 16 and 19 in red, blue and green, respectively;
1p21R pter is translocated to 10p12 [der(10)] and 16q21R qter is
translocated to 2p16 [der(2)]. (F) Chromosomes 2, 13 and 20 in red, blue
and green, respectively; 2p16R pter is translocated to 16q21 [der(16)];
der(2) has the very distal p portion unstained. (G) Chromosomes 5, 10 and
7 in red, blue and green, respectively; 10p12R pter is translocated to 1p21
[der(1)]; der(10) shows distal p unstained. Array CGH found two deletions
at 1p21.1 and 2q32.1 (table 7). (H). Patient 52, chromosome painting.
Insertion of 4q23 within 16q21R q23. Array CGH found three deletions at
1p31.3, 4q24 and 7p21.3 (table 7). (I, L) Patient 53, chromosome
painting. (I) Chromosomes 4 and 3 are red and blue respectively,
3q28R qter is translocated to 9p24 [der(9)]; der(3) shows distal q
unstained; 4q27R qter is translocated to 9q21.1 [der(9)], der(4) shows
distal q unstained. (L) chromosomes 9, 11 and 22 in red, blue and green,
respectively; a portion of chromosome 9 (9q31.3-qter) has been split and
inserted at 4q27 [der(4)] and 3q28 [der(3)] and der(9) shows distal q
unstained; 11q11R qter is translocated to 22q11 [der(22)]; der(11) shows
only the short arm of chromosome 11 and the centromere and der(22) has
all the long arm of chromosome 11. Array CGH found four deletions at
3pter-p26.1, 4q21.3–q22.1, 8q21.11, 9q31.1–q31.2 (table 7). (M–O)
Patient 55, chromosome painting. (M) Chromosomes 8, 12 and 21 in red,
blue and green, respectively; 8q24.1 is both inserted into 6q13 [(der6)],
and translocated to 2q37.1 [der(2)]; der(8) shows distal q unstained. (N)
Cchromosomes 2, 13 and 20 in red, blue and green, respectively;

2q37.1R 2qter is translocated to 6q13 [der(2)]. (O) Chromosomes X, 6
and Y in red, blue and green, respectively; 6q13 R qter is translocated to
8q24.1 [der(8)]; der(6) shows distal q unstained. Array CGH found one
deletion at 6q13q–14.1 (table 7).

Figure 5 Chromosome painting or subtelomeric fluorescence in situ
hybridisation (FISH) or spectral karyotyping in patients 57 and 58. Patient
57 (a) SKY analysis confirmed t(7;11)(p15;p13), and allowed classification
of der(3) as derived from translocation of material of chromosomes 3, 15
and 21; der(9) as from a t(9;10)(p13;q11); der(10) from a rearrangement
involving material of chromosomes 3, 4 and 10; der(15) from
t(3;15)(p13;q13); der(21) from t(9;21)(p13;q11). For each chromosome,
multicolour fluorescence, inverted 4’,6-diamidino-2-phenylindole, and
classified images are reported from left to right, respectively; numbers to
the right of the classified chromosome images indicate the chromosomal
origin. Array comparative genome hybridisation (CGH) found one deletion
at 3p12.3–p12.1 (table 7). (B, C) Patient 58 chromosome painting and
subtelomeric FISH. (B) Chromosomes 5 and 8 in red and green,
respectively; 5q35R qter is translocated to 6q [der(6)] and 8q24R qter is
translocated to distal 5q [der(5)]; the unstained region of der(5) is
presumably filled by a portion of 6q. (C) FISH with subtelomeric probes
shows the translocation of 6qter to 8qter. Array CGH found four deletions
at 5q33.3q35.1, 6q16.1, 6q25.2, 8q23.3 (table 7).
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comparison of the deleted regions with the reference genome
(UCSC) excluded their coincidence with a non-B DNA structure
known to have a potential for genomic instability.31–33 These
findings indicate that the basic mechanism responsible for
occurrence of CCRs is not linked to particular DNA structures
and/or sequences, but to some, possibly external, factors acting
at meiosis I.

We cannot exclude that CCRs are the consequence of an
improper repair of the DSBs that are the initiating event in normal
recombination.34 A similar situation with activation of the
recombination pathway not resulting in functional exchanges
has been reported in an azoospermic man with meiosis I arrest.35

The fathers of our patients are apparently fully fertile; except for

two families with only a single child, all families have multiple
children and no problem in conceiving has been reported.
Moreover, only one of the fathers had any history of cancer that
might have suggested an intrinsic genomic instability;36 this man,
the father of patient 51, had developed Hodgkin’s lymphoma
8 years before the child’s conception. Regardless of the underlying
cause of formation of these abnormal sperm, we have to assume
that it is, at least predominantly, linked to spermatogenesis. This is
in contrast with the higher female vulnerability to non-disjunc-
tion in meiosis I that led Hunt and Hassold37 to hypothesise that
either more errors occur during oogenesis, or that the mechanisms
for recognising and correcting or eliminating cells with errors are
more efficient in spermatogenesis.

Figure 6 (A, B) Custom array CGH and
FISH analysis for breakpoint characterisation
of patients 43 and 50. Some of the
chromosomes involved in CCRs
(chromosome 4 in case 43 and
chromosomes 6 and 11 in case 50) are
indicated by ideograms and only the deleted
regions are shown in light brown in the
profile on the right. Blue lines, proximal and
distal breakpoints for each deletion; brown
lines are present (black) and deleted (green)
probes. The FISH images show the signals of
the BAC clones used to define the position of
the deletions in respect to the translocation
breakpoints.
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CONCLUSION
This study shows that:

(1) Phenotypic abnormalities, present in subjects with
‘‘balanced’’ chromosome rearrangements occur in 40% of
translocation patients and in most patients with CCRs, due to
small deletions, most of which (27 of 42) occur the breakpoints.
The lack of association between the size and number of deletions
and the severity of the phenotype obviously depends on the gene
content of the unbalanced regions and the genomic background.

(2) All the deletions we analysed fully for the parental origin
(5 patients with a reciprocal translocation and 11 patients with
CCRs) originated during paternal meiosis. This suggests that
spermatogenesis is a very delicate moment susceptible to a type
of ‘‘explosion’’ of chromosomes that determines either recipro-
cal translocations or CCRs. We could not find specific DNA
sequences at the 22 breakpoints identified using a specific
customised array. Thus, we were unable to determine which
mechanisms are behind the concurrent breakage of several
chromosomes with loss of part of the broken portions and
random assortment. Considering that all the men who fathered
children with unbalanced translocations or CCRs are fertile, we
can hypothesise that during spermatogenesis some cells escape
the mechanism controlling correct crossing-over, undergoing
chaotic break and reunion of several chromosomes and
exposing the broken portions to exonuclease degradation.

(3) Several patients interpreted as having simple reciprocal
translocations in fact had CCRs with .3 breakpoints (5 of 27).

To conclude, once again array CGH allowed new insights into
cytogenetic diagnosis and research, showing that deletions may
be common in apparently balanced rearrangements associated
with abnormal phenotypes.
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G B Ferrero, M Silengo, Dipartimento di Scienze Pediatriche, Universita’ di
Torino, Torino, Italy
E Fazzi, IRCCS C. Mondino, Università di Pavia, Pavia
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