A new syndrome, congenital extraocular muscle fibrosis with ulnar hand anomalies, maps to chromosome 21qter

Background: Congenital fibrosis of the extraocular muscles (CFEOM) is a heterogeneous group of disorders that may be associated with other anomalies. The association of a CFEOM syndrome with ulnar hand abnormalities (CFEOM/U) has not been reported to date.

Objective: To describe a new autosomal recessive syndrome of CFEOM and ulnar hand anomalies, and localise the disease causing gene.

Methods: Clinical evaluation of the affected members and positional mapping.

Results: Six affected patients with CFEOM/U (aged 2 to 29 years) from a large consanguineous Turkish family were studied. Ophthalmological involvement was characterised by congenital blepharoptosis and restricted eye movements. The postaxial oligodactyly/oligosyndactyly of the hands was more severe on the right side. A genome-wide scan established linkage of this new autosomal recessive syndrome to a locus on chromosome 21qter. The multipoint LOD score was 4.53 at microsatellite marker D21S1259, and fine mapping defined a ~1.5 Mb critical region between microsatellite marker D21S1897 and the telomere of the long arm.

Conclusions: CFEOM/U maps to a 1.5 Mb region at chromosome 21qter. Future identification of the disease causing gene may provide insights into the development of the extraocular muscles and brainstem, as well as anteroposterior limb development.

H euk (1879) was the first to report the combination of congenital blepharoptosis and restricted eye movements. In 1950, Brown described this group of ocular abnormalities in detail and classified the syndromes into five distinct phenotypes: horizontal retraction syndromes; strabismus fixus; vertical retraction syndromes; superior oblique tendon sheath syndromes; and a general fibrosis syndrome. Currently, the horizontal retraction syndromes are referred to as Duane syndrome, the superior oblique tendon sheath syndromes as Brown syndrome, and the remaining syndromes as congenital fibrosis of the extraocular muscles (CFEOM). Recent neuropathological studies have shown that some of the fibrosis syndromes result from developmental defects of particular brain stem and motor neurones and their corresponding axons. Male Duane syndrome, the most common of the CFEOM syndromes, is characterised by limited abduction, variably limited adduction, and globe retraction on attempted adduction. Most cases are sporadic and only about 10% are familial. Cytogenetic analyses of sporadic cases revealed deletions of 8q13. This locus was designated DURS1 (MIM 126800). Linkage analysis in autosomal dominant families mapped the familial disease to the DURS2 locus on 2q31 (MIM 604356). To date, neither the DURS1 nor the DURS2 gene has been identified. Three other inherited CFEOM syndromes have been mapped to different genetic loci:

- CFEOM1 (MIM 135700), an autosomal dominant disorder, was mapped to 12q12, and the disease causing gene was recently identified as KIF21A. Affected individuals have bilateral ptosis and restrictive ophthalmoplegia, and their eyes are fixed below the horizontally neutral position with or without secondary esotropia or exotropia. CFEOM1 is phenotypically variable, with some patients having a milder expression which resembles CFEOM3. However, these families with the milder phenotypes have been linked to the CFEOM1 locus, leading to their designation as CFEOM type 3A (MIM 607034).
- The CFEOM2 locus (MIM 602078), an autosomal recessive disorder, was mapped to chromosome 11q13. Subsequently mutations in the ARHGEF6 gene were described. Affected individuals with CFEOM2 have bilateral ptosis, with both eyes fixed in abduction.
- CFEOM3 (MIM 600638, formerly 604361), an autosomal dominant disorder, was mapped to chromosome 16q24.2. The phenotype of affected individuals in CFEOM3 families was variable and ranged from bilateral ptosis with fixed eyes in an infrafixed and exotropia position to normally positioned eyes with minimal limitation of vertical gaze and unilateral or absent ptosis. To date, the gene causing CFEOM3 has not been identified.

Several CFEOM syndromes occur in association with other anomalies including the Duane radial ray syndrome (DRRS) (MIM 607323), the Wildervanck syndrome (MIM 314600), and familial horizontal gaze palsy with progressive scoliosis (MIM 607313). DRRS is characterised by the Duane anomaly, radial ray abnormalities, and deafness. The DRRS syndrome—also known as Okihiro syndrome—is inherited as an autosomal dominant trait with variable expressivity. The DRRS locus was mapped to 20q13 and subsequently SAL1 was identified as the disease causing gene.

The features of the Wildervanck syndrome include the Duane anomaly, the Klippel-Feil anomaly (fused cervical vertebrae), and congenital perceptive deafness. This disorder is mostly seen in females, suggesting that the syndrome is...

Abbreviations: CFEOM, congenital fibrosis of extraocular muscles; CFEOM/U, congenital fibrosis of extraocular muscles with ulnar hand abnormalities; DRRS, Duane radial ray syndrome; SNP, single nucleotide polymorphism; OD, right eye; OS, left eye
CFEOM with ulnar anomalies maps to 21qter

rs881827
D21S1446
D21S1897
D21S1903
D21S171
D21S1259
D21S1890
D21S1260

II

D21S1260
D21S1890
D21S1259
D21S1912
D21S171
D21S1903
D21S1912
D21S1259
D21S1890
D21S1260

III

D21S1260
D21S1890
D21S1259
D21S1912
D21S171
D21S1903
D21S1912
D21S1259
D21S1890
D21S1260

IV

D21S1260
D21S1890
D21S1259
D21S1912
D21S171
D21S1903
D21S1912
D21S1259
D21S1890
D21S1260

Figure 1 Pedigree of the CFEOM/U family and 21qter haplotype data. The haplotypes of the most telomeric two markers, D21S1446 and rs881827, which segregated with the disease in the whole family are shown in black. The inferred haplotypes of 1-4 are indicated in parentheses. CFEOM/U, congenital fibrosis of extraocular muscles with ulnar hand abnormalities. (See online supplemental table 1 for all marker data, obtainable from http://www.jmedgenet.com/)

Inherited as a sex linked dominant with lethality in affected males.

Familial horizontal gaze palsy with progressive scoliosis is an autosomal recessive disorder characterised by progressive external ophthalmoplegia and scoliosis. The disease causing gene has been mapped to chromosome 11q23–q25.20

Here, we describe a new autosomal recessive CFEOM syndrome with prominent ulnar hand abnormalities in a consanguineous Turkish family. The six affected individuals, aged 2 to 29 years, presented with right eye involvement and bilateral postaxial oligodactyly/oligosyndactyly of the hands, with the right more severely affected than the left. A genome scan of DNAs from family members mapped the disease locus to 21q with a multipoint LOD score of 4.525 at microsatellite marker D21S1259. Further interrogation of the locus narrowed the critical region to ~1.5 Mb between D21S1897 and the telomere of the long arm.

METHODS

Subjects and medical evaluation

Six affected individuals from the consanguineous Turkish family (Fig 1) were clinically evaluated at the division of medical genetics of the Child Health Institute and the orthoptics clinic of the department of ophthalmology, Istanbul Medical Faculty of Istanbul University, Turkey. The study was approved by the Institutional Review Board of the Child Health Institute of Istanbul University and informed consent was obtained from each participant. Five of the six affected individuals had complete ophthalmological examinations, skeletal x rays, abdominal ultrasound, echocardiography, and cranial magnetic resonance imaging (MRI).

Ophthalmological studies

Visual acuity was measured using a Snellen letter chart projector transilluminated at approximately 100 cd/m² and line acuity performances at 6 m were recorded. Non-cycloplegic refractive data were obtained using a retinoscope or a Topcon KR-7000P autokeratorefractometer, and binocular status was evaluated with a Clement–Clarke synoptophore. Range of ocular movements was evaluated with Hess screen tests in patients with binocular vision potential. Direct and indirect papillary reactions were recorded, and photographic records of each patient were obtained. Duction...
Table 1

Summary of clinical findings in patients with congenital fibrosis of extraocular muscles with ulnar hand abnormalities (CFEOM/U) syndrome

<table>
<thead>
<tr>
<th>Family member</th>
<th>Right</th>
<th>Left</th>
<th>Right</th>
<th>Left</th>
<th>Right</th>
<th>Left</th>
<th>Right</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>Visual acuity</td>
<td>20/20</td>
<td>20/20</td>
<td>20/200</td>
<td>20/20</td>
<td>20/20</td>
<td>20/20</td>
<td>20/200</td>
<td>20/20</td>
</tr>
<tr>
<td>Anterior segment</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Microcornea</td>
</tr>
<tr>
<td>Posterior segment</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Ocular motility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviation</td>
<td>14 PD XT</td>
<td>14 PD XT</td>
<td>16 PD XT</td>
<td>18 PD XT</td>
<td>25 PD hT</td>
<td>25 PD hT</td>
<td>20 PD hT</td>
<td></td>
</tr>
<tr>
<td>Dysfunctioning muscle(s)</td>
<td>SR, IO</td>
<td>SR, IO</td>
<td>SR, IO</td>
<td>SR, IO</td>
<td>SR, IO</td>
<td>All</td>
<td>SR, IO</td>
<td>All</td>
</tr>
<tr>
<td>Ptosis</td>
<td>None</td>
<td>None</td>
<td>Marked</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Mild</td>
<td>Marked</td>
</tr>
<tr>
<td>Anomalous head posture</td>
<td>Chin elevation</td>
<td>Chin elevation</td>
<td>Slight head tilt</td>
<td>Slight head tilt</td>
<td>Head turn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand abnormalities</td>
<td>Ab 5; Cl Hy 4 Ab 5</td>
<td>Ab 5; Cl Hy 3; Hy ulnar styloid process; fused triquetrum and lunate</td>
<td>Ab 5</td>
<td>Ab 5</td>
<td>Ab 5</td>
<td>Hy MP 4</td>
<td>Ab 5</td>
<td>Hy MP 4</td>
</tr>
<tr>
<td>Hand radiography</td>
<td>Ab 5; Hy MP 4 Ab 5; Hy MP 4</td>
<td>Ab 5; Hy MP 4</td>
</tr>
</tbody>
</table>

Notes: *Ab*, absent; *Cl*, clinodactyly; *hT*, hypotropia; *Hy*, hypoplastic; *IO*, inferior oblique muscle; *IR*, inferior rectus muscle; *Lev*, levator palpebrae superioris muscle; *M*, metacarpal bone; *P*, phalangeal bone; *PD*, prism diopters; *SR*, superior rectus muscle; *Sy*, syndactyly; *XT*, exotropia. Numbers following abbreviations represent the relevant finger numbers.

and versions in nine diagnostic gaze positions were evaluated with the cover test with special effort to hold the head in a straight position. Deviations in primary position when the head was held straight were measured by the prism cover test and also during the synoptophore examination. Cyclovertical deviations were evaluated with the three step approach, including the Bielschowsky head tilt test. Any aberrant movements, globe retraction, or ptosis were also noted. To assess ptosis, lid openings and levator functions were measured from the upper lid margin while attempted supraduction with frontalis function was controlled by the examiner.

Photographs of the affected individuals were taken with their or their parents’ permission and blood samples were obtained by venepuncture for DNA isolation and gene mapping studies.

Histochemical and ultrastructural studies

Samples of the right superior rectus (SR) and inferior oblique (IO) muscles, obtained from patient III-11 at surgical correction for strabismus, were frozen immediately in liquid nitrogen and kept at −80°C until use. Fresh frozen muscle tissue was processed for routine histology, histochemical staining (including haematoxylin and eosin, Gomori’s modified trichrome, NADH, alkaline phosphatase, acid phosphatase, ATPase at pH 9.4 and 4.2, and esterase), and electron microscopy using standard techniques.

DNA extraction and genotyping

Genomic DNA was isolated from peripheral blood collected in EDTA from patients and family members using the DNA isolation kit for mammalian blood (Roche, Istanbul, Turkey). For the initial genome scan, DNAs were analysed using 422 autosomal microsatellite markers from the genome-wide human screening set (version 9) and single chromosome scan set (Invitrogen Life Technologies, Carlsbad, California, USA). As needed, additional microsatellite markers were obtained from public databases (NCBI, Marshfield Institute, deCode), or new microsatellite markers were designed using the tandem repeat finder program. All new markers were on the genomic contig NT_011515 and were named by their positions on the contig in kb (Human May 2004[hg17] assembly[NCBI Build 35] on the UCSC human genome browser). The new markers and their positions on chromosome 21 were as follows: 1305K (44 748 500 base pairs (bp)), 2044K (45 585 432 bp), 2849K (46 292 500 bp), 3086K (46 529 500 bp), 3258K (46 701 500 bp) (for primer information, see online supplemental table 2, obtainable from http://www.jmedgenet.com/supplemental/). The primers were designed using Primer3 software, and the fluorescent dye labelled forward primers were synthesised by Invitrogen Life Technologies. When no informative microsatellite markers were found in a particular region, single nucleotide polymorphisms (SNPs) were used for linkage analysis. SNP information was obtained from the UCSC Genome Browser and NCBI web sites, and primers were designed as above.

Genomic DNAs were polymerase chain reaction (PCR) amplified in 96-well microtitre plates in an oil-free system using a DNA Engine PTC-200 thermal cycler (MJ Research, Waltham, Massachusetts, USA). Reaction mixtures (10 μl) contained 10 ng of genomic DNA, 2 mM MgCl₂, 10 mM Tris-HCL, pH 8.3, 50 mM KCl, 200 nM of each primer, 0.2 mM dNTPs, and 0.5 U of Taq DNA polymerase (AmpliTaq Gold, Applied Biosystems, Foster City, California, USA). For PCR, the reaction mixtures were initially incubated at 95°C for 10 minutes, and amplified for 27 cycles with denaturation at 94°C for 30 seconds, annealing at 56°C for 30 seconds, extension at 72°C for 30 seconds, and a final extension step at
72°C for seven minutes. PCR products were analysed with either an ABI Prism 3100 genetic analyser or on an ABI Prism 377 DNA sequencer using GeneScan analysis software (version 3.1.2) and Genotyper software (version 2.5) (Perkin-Elmer-Cetus, Norwalk, Connecticut, USA).

PCRs for SNPs were undertaken in a final volume of 50 μl and at specific annealing temperatures for each fragment for 35 cycles. Amplicons were sequenced on an ABI Prism 3700 capillary array sequencer using the ABI Prism BigDye Terminator ready reaction mix (Perkin-Elmer-Cetus). Electropherograms were inspected using ABI Prism sequencing analysis software (version 3.4.1).

Linkage analysis

The multipoint LOD score calculations for each chromosome were individually carried out with the SimWalk2 program (version 2.86) under the assumption of autosomal recessive inheritance with full penetrance. The Mega2 program (version 2.3) was used to create input files for the SimWalk2 program. As data on the population incidence of this unique disorder were unavailable, we used 0.001 as the disease allele frequency. Loci with suggestive LOD scores were genotyped with a denser marker set. The highest LOD score obtained with SimWalk2 was confirmed with the Linkmap program (Fastlink package version 4.1).

RESULTS

Clinical evaluations

Figure 1 shows the pedigree of the consanguineous Turkish family with six affected members in three sibships, of which four (II-9, II-10, II-14, and IV-1) were offspring of first cousin marriages, suggesting autosomal recessive inheritance. Of note, two affected siblings (III-10 and III-11) were the offspring of an affected father (II-9) and a healthy mother (II-8). Although consanguinity between the parents could not clearly be documented, both originated from the same small village and thought they were distantly related. The physical and neurological examinations of all affected members were normal with the exception of the ophthalmological and hand abnormalities. The feet were normal and there were no abdominal ultrasound or echocardiographic abnormalities in the affected individuals. The relevant findings in each patient are described below and summarised in table 1.

Patient 1 (II-9)

This was a 29 year old man who had a right divergent strabismus with hypotropia and 20/20 visual acuity bilaterally, with no refractive error. He had 14° exotropia and 25° hypotropia OD, with no torsional component and a slight “chin up” anomalous head posture. He had a markedly restricted elevation OD, as well as secondary overaction of the inferior oblique muscle OS. Hess screen test results showed restriction of the entire right superior gaze field. Cranial MRI showed volume loss of the right superior rectus muscle and hypertrophy of the inferior rectus muscle. A forced duction test done under general anaesthesia showed no passive restriction of eye movements, and the patient was diagnosed as having right double elevator palsy. He had absent fifth fingers bilaterally, and the proximal part of his right hand

Figure 2 Clinical findings of the patients with congenital fibrosis of extraocular muscles with ulnar hand abnormalities (CFEOM/U). (A) Facial photographs. (B) Centre position of the eyes and eyelids (bar) if ptosis was present, and range of eye movement; a score of 4 indicates normal unrestricted movement; 3, 2, and 1 denote decreasing movement in the indicated direction. (C) and (D) Hand photographs and x rays. See text and table 1 for details. Permission was obtained from the subjects or their parents for the photographs to be reproduced here.
was markedly hypoplastic compared with the left. While
the fourth finger on the right hand was incurved and
hypoplastic (clinodactyly), the fourth finger of the left
hand was normally developed and had a very small (~3–4 mm)
fifth finger bud emerging from the ulnar side at the
metacarpophalangeal level. On x ray, the metacarpal
and phalangeal bones of the fifth fingers were absent bilaterally,
and were hypoplastic for the right fourth finger. The right
ulnar styloid process was also hypoplastic. In addition,
the carpal bones of the right hand were abnormal, the triquetrum
and pisiform bones were absent, and the capitate and hamate
bones were fused. The scaphoid bone of the left hand was
bipartite (fig 2).

Patient 2 (II-14)
This was a 26 year old man who had right hemiptosis and
divergent strabismus. He had 12 Δ of exotropia and 25 Δ
of hypotropia OD without measurable torsional deviation.
Elevation of the right eye was restricted, and this was more
significant in abduction. The Bielschowsky head tilt test was
slightly positive on the right and he had a chin up head
posture. His visual acuity was 20/200 (OD) and 20/20 (OS).
Cranial MRI was similar to that of patient II-9, with volume
loss of the superior rectus muscle and hypertrophy of the
inferior rectus muscle of the right eye. Under general
anaesthesia, the forced duction test showed no passive
restriction in ocular movements. The fifth fingers of both
hands were absent, and the fourth finger of the right hand
was slightly thinner than on the left, although the patient
was right handed. On x ray, both hands were symmetrical,
and the metacarpal and phalangeal bones of the fifth fingers
were absent. The ulnar styloid processes were hypoplastic,
and the triquetrum and lunate bones were fused bilaterally
(fig 2).

Patient 3 (III-10)
This was a four year old girl who had 20/20 visual acuity
bilaterally, 16 Δ exotropia OD, and restricted elevation on
adduction of both eyes, which was more marked on the right.
Head posture appeared normal, but a slight head tilt to the
right shoulder occurred occasionally. Cranial MRI was
normal. The forced duction test was normal, and the patient
was diagnosed as having pseudo-Brown syndrome because of
bilateral inferior oblique muscle dysfunction. The fifth finger
of the right hand was absent, and she had syndactyly of the
fourth and fifth fingers on the left, both of which were
hypoplastic, and the fifth finger had no nail. On x ray, the
metacarpal and phalangeal bones of the fifth fingers were
absent bilaterally, and the metacarpal and phalangeal bones
of the left fourth finger were hypoplastic (fig 2).

Patient 4 (III-11)
This was a three year old boy who had a visual acuity of 20/
200 (OD) and 20/20 (OS) with no significant refractive error.
He had 18 Δ exotropia and 20 Δ hypotropia OD. Restricted
elevation during adduction was more marked than on
abduction. He had a normal head posture, but a slight head
tilt toward the right occurred intermittently. He had a
positive forced duction test, showing a markedly restricted
elevation during adduction resembling that found in Brown
syndrome. Cranial MRI was normal. His fifth fingers were
absent bilaterally, and the right fourth finger was slightly
incurved. On x ray, the metacarpal and phalangeal bones of
the fifth fingers were absent bilaterally (fig 2).

Patient 5 (IV-1)
This 2 1/2 year old girl was the most severely affected. She had
total ptosis and enophthalmia OD, and the right cornea was
smaller (radius, R = 11 mm) than the left (R = 12 mm).
She could not fixate and follow objects with her right eye owing
to profound ambylophia. Ocular movements of the right eye
were restricted in all directions, while they were normal on
the left. Examination of the fundus revealed a tilted disc OD.
The MRI confirmed enophthalmia but did not reveal any
additional abnormalities. The right third, fourth, and fifth
fingers and the left fourth and fifth fingers were absent. On
x ray, the relevant metacarpal and phalangeal bones were
absent, while the other bony structures were normal (fig 2).

Histopathological studies
Histological examination of the right superior rectus from
patient III-11 showed primarily fibroadipose tissue and no
muscle cells. In contrast, the skeletal muscle from the right
inferior oblique biopsy had mild non-specific variation in
fibre size on light microscopy, but no abnormalities were
observed on histochemical analysis or electron microscopy
(data not shown).

Genome scan and linkage to 21qter
A genome scan with 422 autosomal microsatellite markers
was carried out using genomic DNA from 13 family members,
and multipoint linkage analysis was used to map the disease
locus. A location score of 3.3 was obtained at marker
D21S1259 on chromosome 21ql2.3. The addition of the
polymorphic markers D21S1260 and D21S1897—which were
centromeric and telomeric to D21S1259, respectively—
increased the location score to 4.53. The Linkmap program
gave a LOD score of 4.03 at D21S1259 (fig 3). Initial
calculations were made assuming that II-8 and II-9 were
not consanguineous. This assumption, and the limited
informativeness of the most telomeric marker, D21S1446,
resulted in the highest location score being more centromeric,
located among more informative markers.
Haplotype analysis assuming non-consanguinity between
II-8 and II-9 confined the critical region between D21S1260
and the telomere, a critical region of ~5.2 Mb (fig 1). Only
the most telomeric marker, D21S1446, was homozygous in all
affected individuals. Thus the critical region was interrogated
using four additional microsatellite markers (D21S1890,
D21S1912, D21S171, and D21S1903), and four SNPs

![Graphical presentation of multipoint LOD scores. Plot of
the scores obtained by the SimWalk2 program for chromosome 21.](www.jmedgenet.com)

Figure 3
Graphical presentation of multipoint LOD scores. Plot of
the scores obtained by the SimWalk2 program for chromosome 21.
Insert: Plot of the score obtained by Linkmap program in the critical
region only.
CFEOM with ulnar anomalies maps to 21qter

(rs234781, rs2839627, rs170916, and rs234728) which spanned the region. Only the SNP data further narrowed the centromeric boundary of the critical region by 2 Mb to −3.5 Mb from rs234728 to the telomere (online supplemental table 1, obtainable from http://www.jmedgenet.com/supplemental/).

As additional microsatellite markers in the region (available in public databases) were not informative, several new markers were identified and tested (online supplemental tables 1 and 2). Of these, 2044K was the most telomeric heterozygous marker in patients III-10 and III-11, further narrowing the critical region to −1.5 Mb. All microsatellite markers and SNPs telomeric to 2044K (rs2838917, rs725358, 2849K, rs2839168, rs1060600, 3086K, rs2839235, 3258K, rs2839281, D21S1446, rs9722, and rs881827) were homozygous for the same allele in all patients. Although these markers were not very informative in II-9 to II-14, SNP rs881827 clearly showed that affected and unaffected individuals inherited different alleles. Thus, the CFEOM/U1 gene locus was localised to a critical region of −1.5 Mb from the new microsatellite marker, 2044K, to qter. Despite the fact that the new markers in the homozygous region were not very informative, the location and LOD scores were still significant when calculations were repeated assuming consanguinity between II-8 and II-9, and with the inclusion of the new microsatellite markers and SNPs. Using the Simwalk2 program, a multipoint location score of 3.28 was obtained at microsatellite D21S1446 through SNP rs881827. This result was confirmed with the Linkmap program, which gave a multipoint LOD score of 3.12 at D21S1446.

DISCUSSION

The consanguineous Turkish patients described here define a new autosomal recessive syndrome of CFEOM with unilateral hand abnormalities (designated CFEOM/U). The affected individuals all had CFEOM of varying severity, which was mainly confined to the right eye, and bilateral postaxial oligodactyly/oligosyndactyly of the hands, which was more severe on the right. Although the clinical findings were variable between affected individuals, penetrance was complete. Interestingly, the severity of the eye and hand involvement was consistent in the same individual. This was clearly observed in the most and least severely affected individuals, IV-1 and III-10, respectively.

Five patients had superior rectus and inferior oblique muscle involvement, and three (II-14, III-11, and IV-1) also had levator palpebralis dysfunction. Phenotypically, three patients (II-9, II-14, and III-11) had a double elevator palsy, perhaps caused by a superior rectus muscle paresis. Patient III-11 was distinctive in having a more marked mechanical restriction of elevation during adduction, resulting in a positive forced duction test, as observed in patients with Brown syndrome; and patient III-10 had bilateral restricted elevation during adduction with a negative forced duction test, which was interpreted as a pseudo-Brown syndrome because of bilateral inferior oblique dysfunction. The fifth patient had a more generalised and severe pattern of extracocular muscle involvement with markedly restricted eye movements in all directions and a total palsy resembling a generalised fibrosis syndrome. The oculomotor nerve, which normally innervates the superior rectus and levator palpebrae superioris muscles, in contrast, atypical patients with CFEOM2 and CFEOM3 have a restrictive ophthalmoplegia, caused by deficient function of the muscles innervated by the third or fourth cranial nerves. Unlike the classical type, they can raise their eyes above the horizontal line or have unilateral involvement. For such atypical CFEOM, marked phenotypic variability has been reported.3

The patients described here can be classified as atypical CFEOM as they have involvement of the superior and inferior divisions of the third cranial nerve, although patient IV-1 may also have involvement of the fourth and sixth cranial nerves, indicating the variability in the ocular phenotype. In addition to the ocular abnormalities, these patients had oligodactyly/oligosyndactyly of the hands. The only ocular motility disorder with upper limb defects is the Duane-radial ray syndrome with radial ray abnormalities ranging from hypoplasia of the thenar eminence to absence of the radial bone or forearm. In the family presented here, neither the ocular nor the skeletal findings resembled the clinical findings of DRRS. Moebius syndrome, which is characterised by congenital paresis or paralysis of the seventh (facial) cranial nerve frequently accompanied by dysfunction of other cranial nerves, may also be associated with arthrogryposis or hand abnormalities but is quite distinctive from the syndrome we present here.

It is estimated that approximately 1/600 newborn infants have a congenital abnormality of the upper limb.3 Postaxial limb deficiencies are most often unilateral and sporadic. They also occur as a feature of various syndromes. An autosomal dominant, non-syndromic postaxial oligodactyly which affects all four extremities has also been described (MIM 176240).30 However, the association of a congenital fibrosis syndrome with postaxial oligodactyly/oligosyndactyly is novel and has not been reported to date. Of note, only a few causative genes for this group of disorders have been mapped or identified.

By multipoint linkage analysis, the disease locus for CFEOM/U1 was mapped to chromosome 21 between the new microsatellite marker 2044K and the chromosome 21 telomer, a critical region spanning −1.5 Mb. Initial calculations were made assuming that II-8 and II-9 were consanguineous, in order to prevent the lower location scores that would have been obtained because of the limited density and informativity of the marker grid in the genome-wide marker sets. In fact, the markers initially available lacked the ability to detect the very small homozygous region shared by siblings III-10 and III-11 and all other affected individuals. The homozygous region between 2044K and the telomer was further refined by identifying several additional microsatellites and SNPs in the region, which were less than 500 kb apart. Although the telomeric markers were not very informative, recalculating the location score assuming consanguinity gave a score of 3.28 at microsatellite marker D21S1446 through SNP rs881827. This result was confirmed with the Linkmap program which gave a LOD score of 3.12 at marker D21S1446.

Based on the current Human May 2004 (hg17) Assembly (NCBI Build 35) on the UCSC human genome browser, this region of −1.5 Mb contains 17 genes (C21orf123, COL18A1, SLC19A1, PCBP3, COL6A1, COL6A2, FTCD, C21orf56, LSS, MCM3APAS, AF426262, C21orf57, C21orf58, PCNT2, C21orf106, S100B, and HMRT1L1), which have corresponding entries in PDB or SWISS-PROT, or are NCBI reference sequence mRNAs with a “reviewed” status. As there may be unrecognised genes in this −1.5 Mb region, it may contain about 20 genes. However, there were no obvious candidate genes, and no obvious motifs. Efforts are under way to further refine the region of homozygosity and to identify the disease causing gene.
Conclusions
A new autosomal recessive ocular motility syndrome with postnatal oligodactyly and syndactyly (designated CFEOM/U1) was identified and its locus mapped to the most telomeric 1.5 Mb of chromosome 21. Future identification and functional studies of the gene causing this new syndrome may provide insights into the development of the extraocular muscles and their cranial motor nuclei, as well as antero-posterior limb development.

ELECTRONIC DATABASE INFORMATION
- Center for Medical Genetics, Marshfield Clinic Research Foundation, http://research.marshfieldclinic.org/genetics/Map_Markers/maps/indexMapFrames.html
- Primer3 primer design program, http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
- University of California Santa Cruz (UCSC), Human Genome Browser, http://genome.ucsc.edu/cgi-bin/hgGateway

ACKNOWLEDGEMENTS
We wish to thank the patients for participating in this study. We acknowledge Monica Erazo for her excellent technical assistance. This work was supported in part by the Turkish Academy of Sciences, in the framework of the young scientist award program (BW/TUBA-GEIBIP/2002-1-20), National Institutes of Health grants R37 DK34045 (merit award), R01 DK026824 and M01 RR00071 for the Mount Sinai General Clinical Research Center funded by the National Institute for Research Resources. TT is the recipient of an NIH postdoctoral fellowship in Mental Retardation and Developmental Disabilities (T32 HD7105).

Supplementary tables 1 and 2 can be found on our web site, www.jmedgenet.com/supplemental

Authors’ affiliations
T Tukeıl, R J Desnick*, Department of Human Genetics, Istanbul Faculty of Medicine of Istanbul University, Istanbul, Turkey
A Uzman, H Kayserili, M Yuksel-Apak, O Uyguner, B Yolkin*, Child Health Institute, Division of Medical Genetics, Istanbul University
A Gezer, Department of Ophthalmology, Istanbul Faculty of Medicine, Istanbul University
S H Gultekin, Department of Pathology, Section of Neuropathology, Istanbul University
H C Hennies, P Nürnberg, Gene Mapping Centre and Department of Molecular Genetics, Max Delbrück Centre for Molecular Genetics, Berlin, Germany
*Co-senior authors who contributed equally to this research

Competing interests: none declared

Correspondence to: Professor Robert J Desnick, Department of Human Genetics, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA; rjdesnick@msm.edu or Dr Bernd Wallnik, Institute of Child Health, Division of Medical Genetics, Istanbul University, Millet Caddesi, Cep, 34390 Istanbul, Turkey; wallnik@superonline.com

www.jmedgenet.com

Accepted version received 26 September 2004
Accepted for publication 27 September 2004

REFERENCES

Get published within days of acceptance with JMG

We are delighted to announce that the Journal of Medical Genetics launched a “publish ahead of print” programme in March 2005. Selected papers are fast tracked and published online months before they appear in the print journal. Papers of more significance to the international ophthalmology community are published within days of acceptance. The first published article is the raw accepted manuscript; edited and typeset versions are also published as soon as they are available. In addition to being available on JMG Online, the publish ahead of print articles are searchable through PubMed/Medline—establishing primacy for your work. They are linked from the JMG Online home page. The JMG’s publish ahead of print programme is unique among the major clinical genetics journals—to take advantage of this service submit your papers to Journal of Medical Genetics using our online submission and review system Bench>Press (http://submit-jmg.bmjournals.com). For further information contact JMG@bmjgroup.com.
Further evidence for LBP-1c/CP2/LSF association in Alzheimer’s disease families

L Bertram, M Parkinson, M B McQueen, K Mullin, M Hsiao, R Menon, T J Moscarillo, D Blacker, R E Tanzi

Objectives: Several studies suggested chromosome 12 harbours an Alzheimer's disease (AD) risk factor gene. Significant association of a single nucleotide polymorphism (SNP) in the 3' UTR of transcription factor CP2 (LBP-1c/CP2/LSF or TFCP2) at 12q13 was reported in three independent case-control studies, but no family based analyses have been performed to date.

Methods: Genotypes for three SNPs were generated in two independent AD family samples. A meta-analysis on all published case-control studies was also performed.

Results: The A allele of the 3' UTR SNP was associated with increased risk for AD in one sample (odds ratio (OR) 2.1, 95% confidence interval (95% CI) 1.1 to 4.3), but not in the other, possibly due to low power. Haplotype analyses showed that this allele is part of a putative risk-haplotype overtransmitted to affected individuals in one sample and in both samples combined. Meta-analysis of the previously associated 3' UTR SNP showed a trend towards a protective effect of the A allele in AD (OR 0.73, 95% CI 0.5 to 1.1).

Conclusions: This is the first study to examine LBP-1c/CP2/LSF in AD families, and the fifth to independently show significant association. While our results support a role of this gene in AD pathogenesis, the direction of the effect remains uncertain, possibly indicating linkage disequilibrium with another variant nearby.

Abbreviations: AD, Alzheimer’s disease; CAG, Consortium on Alzheimer’s Genetics; CLR, conditional logistic regression; ID, linkage disequilibrium; OR, odds ratio; PDT, pedigree disequilibrium test; SNP, single nucleotide polymorphism; 95% CI, 95% confidence interval.
LSF in two independent and carefully ascertained and evaluated AD family samples, and provide further support for a significant role of this gene in contributing to overall AD risk.

METHODS

Samples

The NIMH AD genetics initiative study sample
Subjects were collected following a standardised protocol applying NINCDS/ADRDA criteria for the diagnosis of AD.26 Over the 10 years that the participating families have been followed, a clinical diagnosis of AD has been confirmed at autopsy in 94% of the cases.27 The NIMH sample includes 1439 individuals (69% female) from 437 families with at least two affected individuals (994 affected individuals, mean (SD) age of onset 72.4 (7.7) years, range 50–97 years), 411 unaffected individuals, and 34 with unknown phenotype.

Consortium on Alzheimer’s Genetics (CAG) study sample
Subjects for this second, independently ascertained, AD family sample were collected under the auspices of the Consortium on Alzheimer’s Genetics, a collaborative effort of the Massachusetts AD Research Center, the University of California, Los Angeles, the University of California, San Diego, and the University of Rochester Medical Center.25 NINCDS/ADRDA criteria were used for a clinical diagnosis of AD, and probands were included only if they had at least one unaffected living sibling willing to participate in this study. Unlike the NIMH sample, no affected individual beyond the proband was required; thus, the vast majority of families are not multiplex. Currently, data and specimen collection is completed for 489 individuals (62.6% female) from 217 sibships in which all affected individuals displayed an onset age \geq50 years (n = 224 affected individuals (mean (SD) age of onset 71.2 (9.1) years, range 50–89 years), n = 265 unaffected individuals). Most sibships consisted of just one discordant sibpair, but in 41 families there were more than two siblings available.

Genotyping
Genotypes for a total of three polymorphisms (that is, the original 3’ UTR SNP, rs4438107 (–10 kb proximal), and rs10876135 (773 bp distal)) in LBP-1c/CP/LSF were generated using fluorescent polarization detection single base extension (FP-SBE) on a Criterion Analyst AD (Molecular Devices, Sunnyvale, CA). PCR primers were designed to yield a product of approximately 250 bp in length and added to \sim10 ng of genomic DNA using individually optimised PCR conditions (sequences available on request). PCR primers and unincorporated dNTPs were degraded by the direct addition of exonuclease I (0.1–0.15 U/rxn) and shrimp alkaline phosphatase (1 U/rxn). The single base extension step was carried out using Thermosequenase (0.4 U/rxn) and the appropriate mix of R110-ddNTP, TAMRA-ddNTP (3 mM), and all four unlabeled ddNTPs (22 or 25 μM) to the ExoI/SAP treated PCR product. To assess genotyping quality and ensure consistency of the genotyping calls, \sim10% of the samples were randomly duplicated and genotyped twice. For all three SNPs combined, average genotyping efficiency was 97.8%, and the discrepancy rate (based on comparison to blinded duplicated samples) was below 0.3% in both samples.

Statistical analyses
Single locus and haplotype based tests of association were done in FBAT (v.1.5.3). FBAT uses a generalised score statistic to perform a variety of TDT type tests and despite the true underlying genetic model, FBAT performs best assuming an additive genetic model, which was used here.28 We used the empirical variance function of the program to account for the presence of linkage in the area29 (as was suggested by previous studies), and an equal weight offset correction to incorporate genotypes from both affected and unaffected individuals. All analyses were performed on the full NIMH sample, the CAG sample, and on the two samples combined. All single locus analyses were repeated using the pedigree disequilibrium test (PDT)30 to confirm results obtained with FBAT (note that the PDT currently does not accommodate haplotype tests). While both tests compute valid p values under the null hypothesis of linkage but no association, the PDT statistic can be less efficient under some circumstances as it only includes discordant sibships and ignores families where only affected siblings are available. Further, to assess the magnitude of any potential effect on disease risk for the 3’ UTR SNP, we performed conditional logistic regression (CLR) stratified on family,31 comparing carriers of the A allele to carriers of the GG genotype. All OR are adjusted for age, gender, and APOE e4 allele status. Note that 95% confidence intervals may be too narrow because CLR may slightly underestimate the standard errors when multiple affected and unaffected subjects are included in each family. However, the magnitude of this effect is expected to be small unless genetic effects are very large.32 Finally, to assess whether families showing association with the 3’ UTR SNP in LBP-1c/CP/LSF overlap with families associated with the intron 18 deletion in AZM,11 we determined for both polymorphisms which of the NIMH pedigrees showed

<table>
<thead>
<tr>
<th>Study</th>
<th>AD cases</th>
<th>Normal controls</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subjects, n</td>
<td>Onset age, mean (SD)</td>
<td>Subjects, n</td>
</tr>
<tr>
<td>Popo et al</td>
<td>166 (63%)</td>
<td>69.4 (10.3)</td>
<td>225 (68%)</td>
</tr>
<tr>
<td>Luecking-Zimmer et al</td>
<td>564 (68%)</td>
<td>77.3 (6.4)</td>
<td>523 (66%)</td>
</tr>
<tr>
<td>Taylor et al</td>
<td>239 (64%)</td>
<td>81.2 (7.8)</td>
<td>342 (59%)</td>
</tr>
<tr>
<td>Lambert et al</td>
<td>1139 (64.6%)</td>
<td>70.5 (6.6)</td>
<td>1317 (62.5%)</td>
</tr>
<tr>
<td>UK</td>
<td>159 (67%)</td>
<td>65.7 (11.1)</td>
<td>205 (51%)</td>
</tr>
<tr>
<td>USA</td>
<td>296 (67%)</td>
<td>75.7 (0.2)</td>
<td>462 (67%)</td>
</tr>
<tr>
<td>France</td>
<td>684 (63%)</td>
<td>69.4 (8.4)</td>
<td>650 (63%)</td>
</tr>
</tbody>
</table>

Studies are shown in chronological order, with the most recent study listed first. Odds ratios (ORs) and 95% confidence intervals (CI) as reported by authors; some ORs are adjusted for co-variables (like age, gender, and APOE e4 status) and might thus vary slightly from the crude ORs presented in fig 1, which were used to calculate summary ORs.
transmission of at least two risk alleles to affected individuals (using the Viewstat option in FBAT).

Haplotype block predictions

Haplotype blocks were estimated using the program Haploviz based on the fourth gamete rule (fourth gamete at 0.02 frequency; see Haploviz website for details at http://www.broad.mit.edu/personal/jcbare/haploviz/index.php). Haploviz was also used for the calculation of pairwise linkage disequilibrium (LD) measures across all three SNPs.

Meta analysis

Study specific crude ORs and 95% CIs were calculated from the raw data for each of the case-control studies investigating the association between the LBP-1c/CP/LSF 3′ UTR SNP and AD. The Q statistic, a test for heterogeneity among the study specific ORs, that is distributed approximately as χ² with k−1 degrees of freedom (k = number of studies), resulted in a p value <.01, suggesting significant between-study heterogeneity. Therefore, to calculate a summary OR for all studies, we used the DerSimonian and Laird random effects model, which utilises weights that incorporate both the within study and between study variance. Note the ORs estimated from the CLR in our family based analyses are adjusted for a number of co-variables (see above), which is why we elected not to combine them with the crude or differently adjusted ORs from the case-control studies. Statistical Analysis System (SAS) was used for the statistical analyses and resulting graphs.

RESULTS

The results of the single locus and haplotype association analyses are shown in table 2. Allele frequencies, as estimated by FBAT, were very similar for all three SNPs in both samples, and for the 3′ UTR SNP are comparable to the previous reports (see legend to table 2). Genotype frequencies for all SNPs were in Hardy-Weinberg equilibrium (p > 0.90). Testing the 3′ UTR SNP in FBAT revealed significant overtransmission of the A allele to affected individuals in the NIMH families (p = 0.05). This was confirmed using the PDT (p = 0.04), and resulted in a significant risk increase in carriers of the A allele v non-carriers (OR 2.1, 95% CI 1.1 to 4.3) using CLR stratified on family. Due to the low numbers, heterozygous and homozygous A allele carriers could not be examined separately, but all three subjects carrying the A/A genotype were affected (two autopsy confirmed, one clinical AD diagnosis), in accordance with the observation that the A allele confers risk in this sample. While the same allele was also overtransmitted to affected individuals in families of the CAG sample resulting in a similar effect size estimate as for the NIMH families, this did not reach statistical significance in any of the analyses (OR 2.1, 95% CI 0.5 to 8.5), possibly due to low power in this overall smaller sample. Also, there were no homozygous A allele carriers in these families. However, combining both samples yielded slightly decreased p values (FBAT = 0.03; PDT = 0.02) and narrower confidence intervals in the effect size estimates (OR 2.1, 95% CI 1.1 to 3.7). In addition to these findings, one of the other two tested SNPs (that is, rs10876135, located 773 bp further 3′) also showed significant association in the NIMH but not in the CAG sample (p = 0.04 and 0.2, respectively; table 2). All three SNPs showed strong pairwise LD and were estimated to reside within the same haplotype block, which is in good agreement with predictions from the International HapMap Project (http://www.hapmap.org/). Thus, all three SNPs were combined in the haplotype analyses which showed evidence for one rare haplotype (H4) being significantly overtransmitted to affected individuals in the NIMH sample (p = 0.03; table 2). A similar frequency and transmission pattern for this haplotype were observed in the CAG families, although the overtransmission to affected individuals did not reach statistical significance, again possibly due to low power. However, as for the 3′ UTR SNP, the association signal of this haplotype was strongest when both samples were combined (p = 0.01). None of these SNPs showed a significant interaction with APOE ε4, gender, or onset age in our CLR analyses (data not shown). This is noteworthy because most of the previous studies demonstrating a protective role for the A allele of the 3′ UTR SNP were comprised of late onset AD families. In this study, however, effect size estimates are quite comparable in families of late (OR 1.8 (1.0−3.2)) and early/mixed onset (OR 2.2 (0.7−7.2); combined sample).

Combining all four previously published case-control studies into one meta-analysis revealed an overall protective effect of the A allele, although this did not reach statistical significance when all six independent case-control series were considered (0.73, 95% CI 0.5 to 1.1; fig 1). Interestingly, allele-frequency estimates across studies were quite similar for the AD cases (ranging from 0.04 to 0.06), but were considerably more variable in the control populations (ranging from 0.02 to 0.09; table 1). In an attempt to reduce this variability, we removed the two populations with the most extreme allele frequency estimates in healthy controls (that is, Panza et al11 and the UK sample from Lambert et al12) and repeated the analyses. As expected, the resulting summary OR proved somewhat more stable, indicating a significant protective effect across the remaining samples (OR 0.62, 95% CI 0.5 to 0.8; fig 1).

Table 2
Association analyses of three SNPs in LBP-1c/CP/LSF in two independent family samples

<table>
<thead>
<tr>
<th>FBAT</th>
<th>Single locus analyses*</th>
<th>Haplotype analyses†</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs4438107</td>
<td>3′ UTR</td>
<td>Rs10876135</td>
</tr>
<tr>
<td>z score (p)</td>
<td>z score (p)</td>
<td>z score (p)</td>
</tr>
<tr>
<td>NIMH (n = 437)</td>
<td>–0.4 (0.7)</td>
<td>–2.0 (0.04)</td>
</tr>
<tr>
<td>CAG (n = 217)</td>
<td>0.5 (0.6)</td>
<td>1.4 (0.2)</td>
</tr>
<tr>
<td>Combined (n = 654)</td>
<td>0 (1)</td>
<td>1.9 (0.05)</td>
</tr>
<tr>
<td>PDT (n = 437)</td>
<td>–2.1 (0.03)</td>
<td>H4</td>
</tr>
<tr>
<td>z² (p)</td>
<td>z² (p)</td>
<td>z² (p)</td>
</tr>
<tr>
<td>NIMH (n = 437)</td>
<td>0.5 (0.5)</td>
<td>2.8 (0.09)</td>
</tr>
<tr>
<td>CAG (n = 217)</td>
<td>1.2 (0.3)</td>
<td>1.5 (0.2)</td>
</tr>
<tr>
<td>Combined (n = 654)</td>
<td>0 (0.9)</td>
<td>2.1 (0.15)</td>
</tr>
</tbody>
</table>

*Minor allele frequencies in the NIMH (CAG) sample were: rs4438107 (T) = 0.46 (0.47), 3′ UTR (A) = 0.06 (0.07), rs10876135 (T) = 0.08 (0.06). z score for minor allele or denoted haplotype allele (positive values indicate overtransmission to affected individuals).

†Haplotype frequencies in the NIMH (CAG) sample were: H1 (C-G-C) = 0.51 (0.48), H2 (T-G-C) = 0.39 (0.43), H3 (T-G-T) = 0.06 (0.04), H4 (C-A-C) = 0.04 (0.04).

Association statistics are presented for risk associated haplotype (H4) and 1 df.
Figure 1 Meta-analysis estimating summary ORs of all published case-control association studies for LBP-1c/CP2/LSF in AD. The three independent case-control samples estimated in the study by Lambert et al12 are considered separately. For all samples, crude ORs were determined from published genotype distributions in cases vs controls; summary ORs are based on these crude ORs. “All excl extreme controls” represents the summary OR after removing samples with extreme allele frequencies in the control populations (that is, the UK sample in Lambert et al2 and the sample in Panza et al15). Filled squares represent sample specific crude ORs (sizes of squares are directly proportional to the sample sizes) and filled diamonds summary ORs; lines represent 95% CI. See Methods section for details.

DISCUSSION

This is the first study to assess the previously reported association between LBP-1c/CP2/LSF and AD using family based methods. Examining two independently ascertained and carefully characterised AD family samples, we observed a significant risk effect of the A allele of the 3' UTR SNP in the NIMH families, and a similar but insignificant effect in the smaller CAG dataset. Combining both samples resulted in the same effect size estimate as for the NIMH families alone, with slightly narrower confidence intervals. This could indicate that the A allele is also a risk factor in the CAG families, which possibly remained undetected due to insufficient power. Interestingly, only two of the NIMH families found to be associated with LBP-1c/CP2/LSF here also show association with the intron 18 deletion in A2M published earlier by our group using the same NIMH dataset,11 if association is assumed when at least two risk alleles are transmitted (as indicated by the Viewstat function in FBAT; see Methods) to affected individuals for each polymorphism. This suggests that these two genes, which are located ~40 Mb apart on chromosome 12, likely function as independent risk factors.

In addition to the findings with the previously reported 3' UTR SNP, we also detected evidence of association with a nearby second SNP (rs10876135) in the NIMH families. It is interesting that the minor allele (that is, T) of this SNP was undertransmitted to affected individuals, reminiscent of the transmission pattern observed in all but one previous case-control study for the 3' UTR SNP. Overtransmitted alleles for both SNPs were located on a rare haplotype (H4), which was associated with risk for AD in the NIMH sample. A similar overtransmission was found in the CAG sample, although this did not reach statistical significance, possibly due to low power (that is, there were only 17 informative transmissions in 30 in the NIMH sample). Taken together, our findings clearly support and extend the previously suggested role of the LBP-1c/CP2/LSF gene in AD pathogenesis.

Thus far, only one study has investigated the potential consequences of the 3' UTR SNP on LBP-1c/CP2/LSF expression and protein function.12 These experiments were somewhat preliminary and revealed that the A allele—which the same authors found to be underrepresented (that is, protective) in their AD cases as compared to controls—had a lower affinity to nuclear proteins in neuroblastoma cells using electrophoresis mobility shift assays, potentially suggesting a decreased function of this nuclear transcription factor. However, when LBP-1c/CP2/LSF mRNA expression was compared in lymphocytes from AD cases and controls, the A allele carriers showed no detectable differences. In fact, only the affected G/G carriers showed an overall reduced expression of this gene in cases vs controls. However, the numbers in these latter experiments were very low (only three A allele carriers in each group) and were only performed in peripheral blood cells. Thus, no inference can be currently drawn from these data regarding any pathophysiological consequences in the brain.

Despite these promising findings, there remains discrepancy with respect to the direction of the potential effect uncovered by the genetic analyses, where two studies now show a risk effect, while three studies favour a protective role for the A allele. There are at least three conceivable scenarios to explain the observed discrepancies across studies. The first possibility is that LBP-1c/CP2/LSF is not an AD susceptibility gene, and the previously published reports constitute false-positive findings published on the basis of publication bias. While currently the possibility of publication bias cannot be assessed reliably due to the limited number of studies, this scenario appears unlikely as it is typically only an issue for the first, and usually positive, publication.13 In AD and other genetically complex diseases, the majority of promising initial findings are followed by a number of non-confirmative studies, which—at least in the past—have mostly outweighed the positive results. However and as mentioned earlier, LBP-1c/CP2/LSF has thus far been quite remarkable in that only positive studies have been published following the initial report, our study being no exception. A second explanation for the discrepant findings is that the families driving the association in our analyses (that is, NIMH) were
as a risk factor. On the other hand, there could be observed for control populations, while in the sample by Panza would have independently occurred on the haplotype back (since the actual risk allele is actually in LD with the G allele former samples the A allele would thus appear as protective have actually been reported with several other AD candidate opposite alleles across different samples and populations, similar observations, that is, significant associations with families analysed here—favour the existence of risk increasing variant(s) on the H4 background. It is noteworthy that similar observations, that is, significant associations with opposite alleles across different samples and populations, have actually been reported with several other AD candidate genes in the past (for example, A2M (recently reviewed in Saunders et al), LRP1, tumour necrosis factor α (TNFA), and butyrylcholinesterase K (BChE-K) both of which do not merely represent a collection of varying false-positive findings, these differences could be attributed to the different patterns of LD across populations of different origin and/or differing degrees of population heterogeneity. While we favour this last alternative as the most likely explanation for the observed differences with the 3' UTR SNP, clearly more studies need to be performed on the potential association of this and possibly other polymorphisms in LBP-1c/CP2/LSF and AD.

In conclusion, we provide additional and independent evidence suggesting that genetic variants in LBP-1c/CP2/LSF significantly alter the risk for developing AD. More studies will need to be performed to further establish this association, and to more definitively assess which variant(s) are actually responsible for the observed effects and how they affect disease pathogenesis.

ACKNOWLEDGEMENTS

The authors wish to thank all families for participating in this study.

Authors' affiliations

L Bertram, M Parkerton, K Mullin, M Hsiao, R Menon, R E Tanzi, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA

M B McQueen, Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA

T J Moscarillo, D Blacker, Gerontology Research Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA

This work was sponsored by grants from the NIMH, the NIA (ADRC), the DFG, the Helios Association Foundation, the Deutscher Forschungsgemeinschaft (DFG) and now receives a fellowship from the Harvard Center for Neurodegeneration and Repair (HCNR), Core A, and a stipend from the National Alliance for Research on Schizophrenia and Depression (NARSAD). MMB is supported by a National Research Service Award, Training Program in Psychiatric Epidemiology and Biostatistics (T32MH17119).

Competing interests: none declared

Correspondence to: Dr Rudolph E Tanzi, Genetics and Aging Research Unit, MGH-East (MIND), 114 16th St., Charlestown, MA 02129, USA; tanzi@helix.mgh.harvard.edu

Revised version received 16 December 2004
Accepted for publication 6 January 2005

REFERENCES

In the paper titled, A new syndrome, congenital extraocular muscle fibrosis with uveal hand anomalies, maps to chromosome 21qter (J Med Genet 2004;41:408-15) there are a number of errors. The affiliations and correspondence details were incorrect, the correct details have been listed below:

T Utkel, R J Desnick, Department of Human Genetics, Mount Sinai School of Medicine, New York, USA

A Uzuncu, H Kayserilli, M Y Apak, O Uyguner, Bernd Wollnik*, Child Health Institute, Division of Medical Genetics, Istanbul University, Istanbul, Turkey

A Gezer, Department of Ophthalmology, Istanbul Faculty of Medicine, Istanbul University

S H Gultekin, Department of Pathology, Section of Neuropathology, Mount Sinai School of Medicine of New York University

H-C Hennies, P Nurnberg, Gene Mapping Center and Department of Molecular Genetics, Max Delbruck Center for Molecular Genetics, Berlin, Germany

* Co-senior authors who contributed equally to this research

Correspondence to:
Professor Robert J Desnick, PhD, MD, Department of Human Genetics, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA; rjdesnick@mssm.edu

or

Bernd Wollnik, MD, Institute of Child Health, Division of Medical Genetics, Istanbul University, Millet Caddesi, Capa, 34190 Istanbul, Turkey; wollnik@superonline.com

In figure 3 the marker D21S1440 should be D21S1440.

On page 413 in the second paragraph, the marker D21S1446 should be D21S1446.

doi: 10.1136/jmg.2005.26138corr1
Online Supplemental Table 1

21qter critical region microsatellite markers* and SNPs* for the CFEOM/U family members

<table>
<thead>
<tr>
<th>Marker Name</th>
<th>Position on Chromosome 21 (bp)</th>
<th>I-3</th>
<th>II-8</th>
<th>II-9</th>
<th>II-10</th>
<th>II-12</th>
<th>II-13</th>
<th>II-14</th>
<th>III-4</th>
<th>III-5</th>
<th>III-10</th>
<th>III-11</th>
<th>III-14</th>
<th>IV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D21S12 60</td>
<td>41 616 421</td>
<td></td>
<td>208 210</td>
<td>210 218</td>
<td>204 210</td>
<td>204 210</td>
<td>204 218</td>
<td>204 210</td>
<td>204 208</td>
<td>204 208</td>
<td>208 218</td>
<td>208</td>
<td>210</td>
<td>204</td>
</tr>
<tr>
<td>rs23478 1</td>
<td>43 324 461</td>
<td></td>
<td></td>
<td>C C</td>
<td>C C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs28396 27</td>
<td>43 342 854</td>
<td></td>
<td></td>
<td>C T</td>
<td>C T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs17091 6</td>
<td>43 342 899</td>
<td></td>
<td></td>
<td>C G</td>
<td>C G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs23472 8</td>
<td>43 342 911</td>
<td></td>
<td></td>
<td>A G</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D21S18 90</td>
<td>43 704 380</td>
<td></td>
<td>149 162</td>
<td>162 162</td>
<td>162 162</td>
<td>162 164</td>
<td>162 164</td>
<td>162 162</td>
<td>149 162</td>
<td>149 156</td>
<td>149 162</td>
<td>149</td>
<td>149</td>
<td>149</td>
</tr>
<tr>
<td>D21S12 59</td>
<td>44 180 204</td>
<td></td>
<td>216 218</td>
<td>204 204</td>
<td>204 204</td>
<td>204 218</td>
<td>218 218</td>
<td>204 204</td>
<td>218 218</td>
<td>218 218</td>
<td>204 218</td>
<td>204</td>
<td>204</td>
<td>218</td>
</tr>
<tr>
<td>D21S19 12</td>
<td>44 433 169</td>
<td></td>
<td>169 191</td>
<td>169 169</td>
<td>169 169</td>
<td>169 197</td>
<td>197 199</td>
<td>169 169</td>
<td>191 194</td>
<td>191 197</td>
<td>169 191</td>
<td>169</td>
<td>169</td>
<td>191</td>
</tr>
<tr>
<td>1305K* 500</td>
<td>44 748 243</td>
<td></td>
<td>245 245</td>
<td>243 243</td>
<td>243 243</td>
<td>243 253</td>
<td>247 253</td>
<td>243 243</td>
<td>245 247</td>
<td>245 249</td>
<td>243 245</td>
<td>243</td>
<td>243</td>
<td>245</td>
</tr>
<tr>
<td>D21S17 1</td>
<td>44 848 113</td>
<td></td>
<td>115 115</td>
<td>113 113</td>
<td>113 113</td>
<td>113 123</td>
<td>117 123</td>
<td>113 113</td>
<td>115 117</td>
<td>115 119</td>
<td>113 115</td>
<td>113</td>
<td>113</td>
<td>115</td>
</tr>
<tr>
<td>D21S19 03</td>
<td>44 997 239</td>
<td></td>
<td>245 253</td>
<td>255 255</td>
<td>255 255</td>
<td>239 255</td>
<td>239 243</td>
<td>255 255</td>
<td>248 253</td>
<td>245 253</td>
<td>253 255</td>
<td>253</td>
<td>249</td>
<td>253</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Marker Name</td>
<td>Position on Chromosome 21 (bp)</td>
<td>I-3</td>
<td>II-8</td>
<td>II-9</td>
<td>II-10</td>
<td>II-12</td>
<td>II-13</td>
<td>II-14</td>
<td>III-4</td>
<td>III-5</td>
<td>III-10</td>
<td>III-11</td>
<td>III-14</td>
<td>IV-1</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>D21S18 97</td>
<td>45 400 825</td>
<td>200</td>
<td>202</td>
<td>196</td>
<td>200</td>
<td>202</td>
<td>202</td>
<td>196</td>
<td>196</td>
<td>196</td>
<td>202</td>
<td>208</td>
<td>196</td>
<td>196</td>
</tr>
<tr>
<td>rs19993 33</td>
<td>45 526 603</td>
<td></td>
<td>C C</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>rs19993 34</td>
<td>45 526 659</td>
<td></td>
<td>A A</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>2044K* 34</td>
<td>45 585 432</td>
<td>248</td>
<td>248</td>
<td>250</td>
<td>254</td>
<td>248</td>
<td>248</td>
<td>248</td>
<td>248</td>
<td>250</td>
<td>248</td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>rs28389 17</td>
<td>45 696 106</td>
<td></td>
<td>C C</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>rs72535 8</td>
<td>46 004 439</td>
<td></td>
<td>T T</td>
<td>T T</td>
<td></td>
</tr>
<tr>
<td>2849K* 8</td>
<td>46 292 500</td>
<td>228</td>
<td>228</td>
<td>226</td>
<td>228</td>
<td>228</td>
<td>228</td>
<td>228</td>
<td>228</td>
<td>228</td>
<td>228</td>
<td>230</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>rs28391 68</td>
<td>46 517 817</td>
<td></td>
<td>T T</td>
<td>T T</td>
<td></td>
</tr>
<tr>
<td>rs10606 09</td>
<td>46 518 648</td>
<td></td>
<td>G G</td>
<td>G G</td>
<td></td>
</tr>
<tr>
<td>3086K* 09</td>
<td>46 529 500</td>
<td>251</td>
<td>251</td>
<td>251</td>
<td>259</td>
<td>251</td>
<td>251</td>
<td>251</td>
<td>251</td>
<td>251</td>
<td>251</td>
<td>253</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>rs28392 35</td>
<td>46 656 794</td>
<td></td>
<td>T T</td>
<td>T T</td>
<td></td>
</tr>
<tr>
<td>3258K* 35</td>
<td>46 701 500</td>
<td>215</td>
<td>215</td>
<td>215</td>
<td>181</td>
<td>152</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>215</td>
<td>221</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>rs28392 7</td>
<td>46 754</td>
<td></td>
<td>C C</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>Marker Name</td>
<td>Position on Chromosome 21 (bp)</td>
<td>I-3</td>
<td>I-8</td>
<td>I-9</td>
<td>I-10</td>
<td>I-12</td>
<td>I-13</td>
<td>I-14</td>
<td>III-4</td>
<td>III-5</td>
<td>III-10</td>
<td>III-11</td>
<td>III-14</td>
<td>IV-1</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>169</td>
<td></td>
<td>213</td>
</tr>
<tr>
<td>D21S14 46</td>
<td></td>
<td>46</td>
<td>46</td>
<td>213</td>
</tr>
<tr>
<td>rs9722 441</td>
<td></td>
<td>46</td>
<td>213</td>
<td>46</td>
<td>213</td>
</tr>
<tr>
<td>rs88182 7</td>
<td></td>
<td>46</td>
<td></td>
<td>213</td>
</tr>
</tbody>
</table>

*Markers sizes in bp or SNP base.

**Newly designed markers. For primer sequence information, see online Supplemental Table 2.

Affected individuals are shown in bold. The critical region homozygous in all affected individuals is framed in bold.

Online Supplemental Table 2

Primer information of the newly designed microsatellite markers

<table>
<thead>
<tr>
<th>Marker</th>
<th>Primer Sequence</th>
<th>Observed Allele Sizes (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1305K</td>
<td>5'-ACCGCTGGTACATGTGAATG-3’</td>
<td>243–253</td>
</tr>
<tr>
<td>2044K</td>
<td>5'-CATCAACACCCACACCAGAG-3’</td>
<td>248–254</td>
</tr>
<tr>
<td>2849K</td>
<td>5'-GGACCGATGGACAGAAGGTA-3’</td>
<td>226–230</td>
</tr>
<tr>
<td>3086K</td>
<td>5'-CACCATGTGGTGTTGGACTGACA-3’</td>
<td>251–259</td>
</tr>
<tr>
<td>3858K</td>
<td>5'-TTACCCCTGTGCATTCTGGGA-3’</td>
<td>215–221</td>
</tr>
</tbody>
</table>