Autosomal recessive erythropoietic protoporphyria in the United Kingdom: prevalence and relationship to liver disease

Erythropoietic protoporphyria (EPP; MIM 177000) is an inherited disorder of haem biosynthesis characterised by the onset in early childhood of lifelong acute photosensitivity of sun-exposed skin.1 It results from partial deficiency of ferrochelatase (FECH; E.C. 4.99.1.1.), which leads to accumulation of protoporphyrin IX in erythrocytes, plasma, skin, and liver. Up to 35% of patients have mildly abnormal biochemical tests of liver function, while liver failure caused by the hepatotoxic action of protoporphyrin complicates about 2% of cases.2–5

Over 70 mutations in the FECH gene have been identified in EPP families (Human Gene Mutation Database: http://www.hgmd.org/).6–10 Most individuals who are heterozygous for these mutations are asymptomatic, despite having half-normal FECH activities.11 For protoporphyrin to accumulate sufficiently to cause photosensitivity, reduction of FECH activity to below a critical threshold of about 35% of normal is required.12–14 In most patients, this additional reduction results from inheritance of a low expression FECH allele trans to a severe mutation.15–18 The low expression allele is the C variant of a single nucleotide polymorphism (SNP; IVS3-48C/T) in intron 3 of the FECH gene.19 Because the IVS3-48C allele is common in the general population, being present in about 11% of the white inhabitants of France,20 inheritance trans to a severe FECH mutation occurs within EPP families at a frequency that is high enough to produce a pattern of inheritance of overt EPP resembling an autosomal dominant disease with incomplete penetrance.

Although co-inheritance of an IVS3-48C allele appears to explain the occurrence of photosensitivity in most EPP families,21–23 alternative mechanisms may reduce FECH activity to below threshold activity in some patients. These include autosomal recessive inheritance with an FECH mutation on both alleles,15 19–22 deletion of an FECH gene secondary to haematological malignancy,24 and a dominant-negative effect from the mutant FECH allele.25

The prevalence of autosomal recessive EPP has not been established. FECH measurements in a small number of families suggest that up to 20% of patients may have autosomal recessive disease,25 26 but mutational analysis of patients with EPP suggests a lower frequency.8 9 27; mutations on both alleles have been identified in only three families.20 21 22 In one of these families, two siblings developed liver failure21 and it has been suggested that severe FECH mutations on both alleles may predispose to end stage liver disease during adolescence.21 27 28 This suggestion has been disputed on the grounds that protoporphric liver disease was not present in the two other families with autosomal recessive EPP20 23 and that all other patients with severe liver disease in whom mutations have been identified have been heterozygotes.8 29

Here we describe the molecular investigation of 105 randomly selected patients with EPP and one patient with liver disease caused by EPP. We show that the prevalence of autosomal recessive disease among patients with EPP in the United Kingdom is 3% (95% confidence interval: 1 to 7); that this mode of inheritance is the usual explanation for overt EPP in patients without an IVS3-48C allele; autosomal recessive EPP may carry a much higher risk of severe liver disease than the more usual form.

Autosomal recessive EPP appears to be clinically indistinguishable from EPP in which an FECH mutation on one allele is trans to a low expression IVS3-48C allele. Screening all new patients with EPP for absence of the IVS3-48C allele to select those with the T/T genotype for mutational analysis of the FECH gene should identify most patients with autosomal recessive disease.

METHODS

Patients and control subjects

We investigated 106 apparently unrelated patients (61 female, 45 male; mean age at investigation: 24 years, range

Key points

- Erythropoietic protoporphyria (EPP) is an inherited disorder of haem biosynthesis resulting from partial deficiency of ferrochelatase (FECH) and characterised by early onset of lifelong acute photosensitivity.
- Over 70 mutations in the FECH gene have been identified in EPP families. Inheritance of an IVS3-48C allele trans to the mutation appears to explain photosensitivity in most families, though alternative mechanisms sometimes may be involved.
- A total of 105 randomly selected patients with EPP and one patient with liver disease caused by EPP were molecularly investigated.
- The prevalence of autosomal recessive disease among patients with EPP in the United Kingdom is 3% (95% confidence interval: 1 to 7). This mode of inheritance is the usual explanation for overt EPP in patients without an IVS3-48C allele; autosomal recessive EPP may carry a much higher risk of severe liver disease than the more usual form.
- Autosomal recessive EPP appears to be clinically indistinguishable from EPP in which an FECH mutation on one allele is trans to a low expression IVS3-48C allele. Screening all new patients with EPP for absence of the IVS3-48C allele to select those with the T/T genotype for mutational analysis of the FECH gene should identify most patients with autosomal recessive disease.

Abbreviations: ALT, alanine aminotransferase; AST, aspartate transaminase; EPP, erythropoietic protoporphyria; FECH, ferrochelatase; GGT, gamma glutamyl transpeptidase; SNP, single nucleotide polymorphism

The prevalence of autosomal recessive EPP may carry a much higher risk of severe liver disease than the more usual form, particularly when one of the mutations abolishes FECH activity.
4 RESULTS

Case report

Patient A presented at 4 years of age with itching, painful erythema and swelling affecting sun-exposed skin which had been occurring from the age of 1 year. The eruption started each year in early spring, persisted during the summer months, and then subsided. There was no family history of photosensitivity. On examination, there was mild linear and varioliform scarring over the nose. His erythrocyte protoporphyrin concentration was increased at 17.4 µmol/l with normal urinary porphyrin, porphobilinogen, and 5-aminolaevulinate concentrations, confirming the clinical diagnosis of EPP. Advice was given about the use of sunblock creams and appropriate protective clothing. At 6 years of age, he was commenced on beta-carotene due to worsening symptoms during the summer months. Biochemical tests of liver function were mildly deranged: aspartate transaminase (AST) 59 IU/l (normal: 5–45 IU/l), alanine aminotransferase (ALT) 75 IU/l (normal: 5–40 IU/l), total bilirubin 16 µmol/l (normal: 1–22 µmol/l).

At the age of 9 years, he was admitted to hospital during July with a painful, red, swollen face, abdominal discomfort, and loose stools. On examination, he had tender erythema and oedema of his face, associated with linear scarring on the nose and cheeks, and extensive varioliform scarring on the forehead and dorsal aspects of his hands. His haemoglobin was 11 g/dl with mild hypochromia and microcytosis. Biochemical tests of liver function were normal. His symptoms settled rapidly and annual desensitisation with ultraviolet-B phototherapy was initiated to improve his restricted lifestyle.

Evidence of increasing liver damage was first noted at the age of 12 years: AST 109 IU/l, ALT 184 IU/l, gamma glutamyl transpeptidase (GGT) 131 IU/l (normal: 5–30 IU/l), and total bilirubin 7 µmol/l. Erythrocyte protoporphyrin was 36.0 µmol/l, plasma protoporphyrin 83 nmol/l (normal: <10 nmol/l). He complained of recurrent abdominal discomfort over the next 3 months. An abdominal ultrasound scan was normal. He was started on cholestyramine 4 g daily.

By the age of 13 years, his symptoms had worsened, with an episode of painful, swollen arms after walking outside for just 10 min on a cloudy day. His erythrocyte and plasma protoporphyrin had increased to 45.7 µmol/l and 727 nmol/l, respectively, and there was evidence of further liver damage: AST 219 IU/l, ALT 319 IU/l, GGT 255 IU/l, and total bilirubin 18 µmol/l. His haemoglobin was 11.2 g/l and ferritin 18 µg/l. He was referred for early assessment as a potential candidate for liver transplantation. A liver biopsy was not considered necessary at this stage. His symptoms are well controlled 1 year later (AST 106 IU/l, ALT 164 IU/l, GGT 125 IU/l).

Analysis of genomic DNA from patient A and his asymptomatic mother (erythrocyte protoporphyrin: 1.2 µmol/l) showed him to be a compound heterozygote for novel nonsense (215T>C [L72X]) and missense (778T>C [F260L]) mutations of the FECH gene (table 1). He was homozygous for the T variant of the FECH IVS3-48C/T SNP. To determine the effect of the missense mutation on FECH activity, the F260L mutant was expressed in E. coli and shown to decrease activity to 50% of normal (table 2).

Prevalence of the FECH IVS3-48C allele in patients with overt EPP and control subjects

We screened for autosomal recessive disease by searching a randomly selected group of 105 unrelated patients with overt EPP for patients who had not inherited an IVS3-48C allele. This strategy was based on the assumption that all patients possessing this allele are heterozygous for a severe FECH mutation in trans to it.10–18
Identification of autosomal recessive EPP

Three unrelated patients (patients B, C, and D) with overt EPP had not inherited the low expression IVS3-48C allele (table 3). Patients B and C had a sibling with EPP, but none had any other family history of the disease or parents known to be consanguineous. To investigate the molecular mechanism for EPP in these patients, we sequenced their FECH genes. Sequencing and gene dosage analysis showed that patient B was homozygous for a novel missense mutation in exon 4 (416A>T [Q139L]) (table 1). Patient C was found to be a compound heterozygote for novel missense mutations in exon 7 (707G>A [C236Y]) and exon 10 (1137G>C [K379N]) (table 1). Activities of the Q139L, C236Y, and K379N mutants were 80%, 90%, and 40% of wild type activity (table 2). The family investigation showed that the low expression IVS3-48C allele was trans to the C236Y FECH mutation in one of the parents of patient D who had no history of photosensitivity and a normal erythrocyte protoporphyrin concentration (1.7 μmol/l). No mutation was identified on either FECH allele of patient D. Deletion of the entire gene was excluded by showing that she was heterozygous for two intragenic SNPs (287G/A, IVS9-50delA). The cause of this patient’s EPP remains to be established.

To confirm that the patients with an IVS3-48C allele were heterozygous for FECH mutations, the FECH gene was sequenced in 14 patients selected at random from the 102 patients in this group (table 3). A single mutation was identified in 10 of these patients, including four mutations that have not previously been reported in EPP (table 4). No mutation was found in three patients, one of whom was homozygous for the IVS3-48C allele. The other 13 patients were all IVS3-48C/T heterozygotes. Unexpectedly, two missense mutations were identified in patient E, 163G>T (G55C) and 1001C>T (P334L) (table 1); G55C was also present in one of the three previously published cases of autosomal recessive EPP. Family investigation was not possible, so we were unable to confirm that this patient was a compound heterozygote or to determine which mutation was trans to the IVS3-48C allele.

DISCUSSION

Previously, only three EPP families have been identified in which patients had mutations on both alleles. Here we describe an additional four unrelated patients with autosomal recessive EPP. FECH activity in such large groups of patients was not practicable, we initially screened for the presence of IVS3-48C alleles and then carried out mutational analysis on patients lacking this allele. Implicit in this strategy is the assumption that all patients having an IVS3-48C allele are heterozygous for a disabling FECH mutation. Although there is support for this assumption from previous studies of EPP families, we have carried out the first investigation of a large, randomly selected group of unrelated patients for the presence of mutations on both FECH alleles. Because detailed analysis of the complete 45 kb FECH gene in such a large group of patients was not practicable, we initially screened for the presence of IVS3-48C alleles and then carried out mutational analysis on patients lacking this allele. Implicit in this strategy is the assumption that all patients having an IVS3-48C allele are heterozygous for a disabling FECH mutation. Although there is support for this assumption from previous studies of EPP families, we have carried out the first investigation of a large, randomly selected group of unrelated patients for the presence of mutations on both FECH alleles. Because detailed analysis of the complete 45 kb FECH gene in such a large group of patients was not practicable, we initially screened for the presence of IVS3-48C alleles and then carried out mutational analysis on patients lacking this allele. Implicit in this strategy is the assumption that all patients having an IVS3-48C allele are heterozygous for a disabling FECH mutation. Although there is support for this assumption from previous studies of EPP families, we have carried out the first investigation of a large, randomly selected group of unrelated patients for the presence of mutations on both FECH alleles. Because detailed analysis of the complete 45 kb FECH gene in such a large group of patients was not practicable, we initially screened for the presence of IVS3-48C alleles and then carried out mutational analysis on patients lacking this allele. Implicit in this strategy is the assumption that all patients having an IVS3-48C allele are heterozygous for a disabling FECH mutation. Although there is support for this assumption from previous studies of EPP families, we have carried out the first investigation of a large, randomly selected group of unrelated patients for the presence of mutations on both FECH alleles.

Table 1: FECH alleles in autosomal recessive EPP

<table>
<thead>
<tr>
<th>Patient</th>
<th>Allele 1</th>
<th>Allele 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>215T>C</td>
<td>778T>C</td>
</tr>
<tr>
<td>B</td>
<td>416A>T</td>
<td>Q139L</td>
</tr>
<tr>
<td>C</td>
<td>707G>A</td>
<td>C236Y</td>
</tr>
<tr>
<td>D</td>
<td>163G>T</td>
<td>G55C</td>
</tr>
</tbody>
</table>

Table 2: FECHs expressions in E. coli of mutant and wild type

<table>
<thead>
<tr>
<th>FECH mutation</th>
<th>Expression activity* [nmol mesohaem/min/nmol FECH]</th>
<th>Percent wild type activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>2.5, 2.7</td>
<td>100</td>
</tr>
<tr>
<td>Q139L</td>
<td>0.46</td>
<td>18</td>
</tr>
<tr>
<td>C236Y</td>
<td>0.30</td>
<td>12</td>
</tr>
<tr>
<td>F260L</td>
<td>1.36</td>
<td>52</td>
</tr>
<tr>
<td>K379N</td>
<td>0.97</td>
<td>37</td>
</tr>
</tbody>
</table>

*FECH activities are means of triplicate measurements.
accumulation of protoporphyrin in the liver and progressive liver damage.2 Liver disease in EPP may be associated with particularly low FECH activities.3 The missense mutation (F260L) in our patient decreased FECH activity to 50% of normal (table 2) and was \textit{trans} to a null (L72X) mutation. Assuming a similar effect in human cells in vivo, the predicted FECH activity in this patient would be about 25% compared to about 34% for L72X \textit{trans} to an IVS3-48C allele.

Our findings support the view that autosomal recessive EPP carries a higher risk of severe liver disease than other forms of EPP.21 Liver disease has complicated EPP in two of the seven families proven by molecular analysis to have autosomal recessive disease20,21,23 (table 1). Analysis of the mutations in 19 unrelated patients with severe liver disease who were heterozygous for \textit{FECH} mutations has shown that missense mutations are present in only two of 19 patients, whereas about 25% of all mutations identified in EPP are missense mutations.92,93 In this context, it is intriguing that two of the three patients with autosomal recessive EPP who did not have missense mutations on both alleles have both had liver disease21 (table 1).

All our patients with autosomal recessive disease had a missense mutation on at least one allele (table 1). Of the six missense mutations in our patients, only two have previously been identified: G55C in a compound heterozygote with autosomal recessive disease20 and P334L as the only mutation identified on only one allele in patients with EPP heterozygous for \textit{FECH} mutations identified on only one allele (table 1). Of the six missense mutations previously identified on only one allele in EPP, only P334L has shown much lower or undetectable FECH activities.1 Some or all of the milder mutations that we identified may only cause disease in homozygotes or when \textit{trans} to another \textit{FECH} mutation and thus be truly recessive. The functionally most severe missense mutation that we identified (C236Y) (table 2) had not caused clinically overt EPP when \textit{trans} to an IVS3-48C allele in the father of patient C indicating that this combination, and presumably similar combinations with less severe mutations, may not lead to disease in heterozygotes.

In conclusion, autosomal recessive EPP appears to be clinically indistinguishable from EPP in which an \textit{FECH} mutation on one allele is \textit{trans} to a low expression IVS3-48C allele but may carry a much higher risk of severe liver disease. In practice, screening all new patients with EPP for absence of the IVS3-48C allele to select those with the T/T genotype for mutational analysis of the \textit{FECH} gene should identify most patients with autosomal recessive disease. Such patients can then be managed clinically with particular attention to their high risk of liver disease.

ACKNOWLEDGEMENTS

We thank Professor J-C Deybach, INSERM U 409, Hopital Louis Mourier, Colombes, France, for providing information about the \textit{FECH} IVS3-48C/T SNP in advance of publication. Part of the work was carried out as the project component of the MSc in Clinical Biochemistry and Molecular Biology of the University of Surrey undertaken by MK.

Authors’ affiliations

S D Whatley, N G Mason, M Khan, M N Badminton, G H Elder, Department of Medical Biochemistry and Immunology, University Hospital of Wales and University of Wales College of Medicine, Cardiff, UK

M Zamiri, W S Douglas, N J Wainwright, Department of Dermatology, Monklands Hospital, Airdrie, UK

W N Missaoui, T A Dailey, H A Dailey, Department of Microbiology and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA

The work was supported in part by grant DK 32303 from the NIH to HAD.

Conflict of interest: none declared.

Correspondence to: Professor G H Elder, Department of Medical Biochemistry and Immunology, University of Wales College of Medicine, Cardiff CF1 44XN, UK; ghelder@trillium.fsworld.co.uk

Received 5 November 2003

Accepted for publication 1 March 2004

REFERENCES

Table 3 \textit{FECH} IVS3-48C/T polymorphism in EPP patients and control subjects

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of subjects</th>
<th>T/T</th>
<th>T/C</th>
<th>C/C</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPP</td>
<td>105</td>
<td>3 (2.8)</td>
<td>97 (92.4)</td>
<td>5 (4.8)</td>
<td>103 (49.1)</td>
<td>107 (50.9)</td>
</tr>
<tr>
<td>Control</td>
<td>100</td>
<td>87</td>
<td>13</td>
<td>0</td>
<td>187 (93.5)</td>
<td>13 (6.5)</td>
</tr>
</tbody>
</table>

Figures in parentheses are percentages.

Table 4 \textit{FECH} mutations identified on only one allele in patients with EPP heterozygous for the IVS3-48C/T SNP

<table>
<thead>
<tr>
<th>Exon/intron</th>
<th>Mutation</th>
<th>Effect</th>
<th>No. of patients</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40delG</td>
<td>Stop+72 bp</td>
<td>1</td>
<td>Todd et al37</td>
</tr>
<tr>
<td>1</td>
<td>33delT</td>
<td>Stop+54 bp</td>
<td>1</td>
<td>This paper</td>
</tr>
<tr>
<td>3</td>
<td>IVS3+2T→G</td>
<td>Splice defect</td>
<td>1</td>
<td>Sarkan et al37</td>
</tr>
<tr>
<td>4</td>
<td>IVS4+1G→C</td>
<td>Splice defect</td>
<td>2</td>
<td>Rufenacht et al37</td>
</tr>
<tr>
<td>7</td>
<td>F260L</td>
<td>Stop+25 bp</td>
<td>1</td>
<td>This paper</td>
</tr>
<tr>
<td>9</td>
<td>945delA</td>
<td>Stop+335 bp</td>
<td>1</td>
<td>This paper</td>
</tr>
<tr>
<td>9</td>
<td>1077G</td>
<td>Splice defect</td>
<td>2</td>
<td>This paper</td>
</tr>
</tbody>
</table>
Online mutation report

