The corneal dystrophies represent a large and varied group of inherited conditions, and the underlying molecular basis of many has been elucidated over the past decade or so. This exciting progress has been rapid and now allows a re-evaluation of our clinical and morphological classifications. This monograph has been produced in association with the American Academy of Ophthalmology, and is published by Oxford University Press. The major body of the text comprises six chapters and a total of 123 pages. In addition, there is a short self-study examination directed towards US CME accreditation. As would be expected from such a collaboration, the production qualities are high. Dr Wang, the editor, is a clinical academic in the cornea with major interests in the cornea, external eye disease, and refractive surgery. He lists the book's educational objectives: to bridge the gap between the new molecular information and the knowledge base for today's ophthalmologists; to discuss current understanding of the molecular pathogenesis of these conditions; to outline the use of excimer laser for the treatment of corneal diseases; and to review the most recent literature on corneal dystrophies and degenerations. This monograph, and its two first objectives in particular, are therefore timely in their conception.

The editor is co-author of five of the six chapters. The first chapter, written in collaboration with Dr Francis Munier, discusses the inheritance patterns of the corneal dystrophies. In particular, it covers the range of epithelial and stromal dystrophies caused by defects in TGFBR1/RH3, including a detailed and well-conducted examination of their molecular pathology. The following three chapters describe, respectively, the epithelial, stromal, and endothelial dystrophies. In general, the clinical, histopathological, and ultrastructural features of the disorders are clearly described, illustrated, and referencing. Here, the molecular focus is generally on gene identification and, whereas for certain disorders—for example, Meesmann epithelial dystrophy—there is a clear description of the underlying molecular mechanisms, this is disappointingly covered for many conditions. The final two chapters, concerning corneal and conjunctival degenerations and excimer laser therapies for corneal dystrophies, are likely to be of limited interest to the geneticist and carry little molecular information.

The key difficulty, when producing a monograph such as this, is ensuring that what is produced is as recent as possible and is not simply a replication of information that is available in other ophthalmological texts.

In contrast to many other books where there are collections of chapters, for instance focused on neurological diseases, this book deals with some of the most esoteric disorders very well. There are fine chapters on repeat instability (by Lenzmeier and Freudenberg; and by Cleary and Pearson), ocularpharyngeal muscular dystrophy (Braith and on transgenic models of myotonic dystrophy (Wansink and Wieringa), spinobulbar muscular dystrophy (Sobue and colleagues), Huntington's disease (Hickey and Chesselet) and Fragile X syndrome (Bakker and Oostra). It was good to see a chapter devoted to the interesting and possibly under recognised cervebellar ataxia syndrome associated with FRAXA premutation carriers (Hagerner et al) and the excellent chapter on SCA3 by Kobayashi and Kakiuzka (a group that have made a number of key contributions to the polyglutamine disease field). In general, the chapters are written by authorities in their fields (including Brice, Ashizawa, Margolis, La Spada, Nelson, Usdin, and Ranum).

In conclusion, this book includes many chapters that add to and complement existing texts dealing with these diseases. The articles are generally of a high standard and are concisely written. This book would be of particular value to human geneticists, genetic counsellors, and researchers working on this class of diseases.

D C Rubinstein

The acknowledgements for the original article by Bentley et al (J Med Genet 2003;40:249–56) were omitted and should read:

Acknowledgements
We thank Dr Katarina Hannula and Prof Juha Kere for preliminary allelic expression analysis of CPA genes in lymphoblastoid cell lines. We also thank the Dunhill Medical Trust, the Wellcome Trust (LB, ZB, FK), the MRC (DM, JP, CB), and the Canadian Institutes of Health Research (CIHR) for supporting this research. K Nakabayashi is a Research Fellow of the CIHR and S W Scherer is a Scientist of the CIHR and the International Scholar of the Howard Hughes Medical Institute. All animal studies were carried out under the guidance issued by the Medical Research Council (MRC) in The Use of Animals for Medical Research (July 1993) and Home Office Project Licence No 30/1517.

We apologise for these errors.

Ressiotiotis T, Griffiths P G, Bürch M et al. Primary open angle glaucoma is strongly associated with a specific p33 gene haplotype (J Med Genet 2004;41:296–8). An error has been detected in the second paragraph of the Key points box. In the penultimate sentence “arginine residue” should be ‘glycine residue’ and references to this site should be transposed. The authors apologise for this error.