Effects of a cancer genetics education programme on clinician knowledge and practice

K R Blazer, M Grant, S R Sand, D J MacDonald, G C Uman, J N Weitzel

Background: Many clinicians lack adequate knowledge about emerging standards of care related to genetic cancer risk assessment and the features of hereditary cancer needed to identify patients at risk.

Objective: To determine how a clinical cancer genetics education programme for community based clinicians affected participant knowledge and changed clinical practice.

Methods: The effects of the programme on participant knowledge and changes in clinical practice were measured through pre and post session knowledge questionnaires completed by 710 participants and practice impact surveys completed after one year by 69 out of 114 eligible annual conference participants sampled.

Results: Respondents showed a 40% average increase in specific cancer genetics knowledge. Respondents to the post course survey reported that they used course information and materials to counsel and refer patients for hereditary cancer risk assessment (77%), shared course information with other clinicians (83%), and wanted additional cancer genetics education (80%).

Conclusions: There was a significant immediate gain in cancer genetics knowledge among participants in a targeted outreach programme, and subset analysis indicated a positive long term effect on clinical practice. Clinician education that incorporates evidence based content and case based learning should lead to better identification and care of individuals with increased cancer risk.

METHODS

The project and study protocol were approved by the City of Hope Institutional Review Board (IRB#00081). The core curriculum was developed by a multidisciplinary team from the Clinical Cancer Genetics and Nursing Research Education faculty, incorporating key elements of the cancer genetics curriculum published by the American Society of Clinical Oncologists, periodic reviews of the medical literature, scientific meeting proceedings, and practical clinical experience from the Cancer Screening and Prevention Program (a clinical cancer genetics services network). Topic domains of the CGEP core curriculum are listed in table 1. Detailed descriptions of the CGEP curriculum development and programme implementation are published elsewhere.

Modules focusing on a specific topic (for example, hereditary breast and ovarian cancer) with illustrative case based scenarios and evidence based information on high risk surveillance and management options were delivered by CGEP faculty as one hour lectures at community hospital grand rounds or similar educational venues. In addition, six annual full day conferences providing in depth coverage of a specific topic in clinical cancer genetics were conducted at the City of Hope Cancer Genetics Education Program (CGEP). The objective of the first phase of this programme was to confer screening level competence (ability to recognise key features associated with potential hereditary cancer predisposition adequately to refer at risk patients for cancer risk assessment) to community based physicians and other health care professionals through progressive lectures accredited for continuing medical education at regional health centres as well as annual full day conferences. This report describes the outcomes of the first five years of educational outreach by the CGEP.

Abbreviation: CGEP, City of Hope Cancer Genetics Education Program

The ongoing discovery of genes associated with cancer and diagnostic tests to predict cancer risk brings new hope for the early detection or prevention of disease. While only 5–10% of cancers are associated with highly penetrant single gene traits, this translates to hundreds of thousands of cancer cases attributable to hereditary predisposition. Identifying those at increased risk through genetic cancer risk assessment allows for more effective application of potentially life saving surveillance or preventive measures, and may improve the quality of life for individuals and families at risk.

The risk assessment process involves cancer risk genetic counselling and diagnostic or predictive germline genetic testing when indicated, and is now considered standard care for such syndromes as multiple endocrine neoplasia types I and II, familial adenomatous polyposis, and von Hippel-Lindau disease, as well as for disorders seen more commonly in clinical practice, such as hereditary breast and ovarian cancer syndrome and hereditary non-polyposis colorectal cancer.

While physicians are increasingly aware of advances in genetic technology, many are not adequately trained to recognise the features of hereditary cancer predisposition that warrant referral for risk assessment, and some do not view this service as a health care priority because they are unaware of the potential benefits of genetic testing to the patient. Educational resources, professional practice guidelines, and a robust literature on practical issues in cancer risk assessment are emerging, but limited knowledge among primary care physicians and other healthcare providers who influence patient referrals remains a significant barrier to appropriate utilisation of cancer risk assessment services.

Targeted education to clinicians should facilitate the integration of genetic screening services into clinical practice, but promoting cancer genetics education is a challenge, due in part to the complex health and social issues related to hereditary disease, to the rapidly evolving body of knowledge about genetic risk assessment and high risk management, and to the constraints on physician time for continued education. In 1996, the City of Hope Departments of Clinical Cancer Genetics and Nursing Research and Education joined up, to establish the City of Hope Cancer Genetics Education Program (CGEP). The objective of the first phase of this programme was to confer screening level competence (ability to recognise key features associated with potential hereditary cancer predisposition adequately to refer at risk patients for cancer risk assessment) to community based physicians and other health care professionals through progressive lectures accredited for continuing medical education at regional health centres as well as annual full day conferences. This report describes the outcomes of the first five years of educational outreach by the CGEP.
Table 1 Cancer genetics education programme curriculum topic areas

<table>
<thead>
<tr>
<th>Cancer genetics education programme (CGEP) topic domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles and practice of genetic cancer risk assessment*</td>
</tr>
<tr>
<td>Basic mechanisms of heredity, mutations, and carcinogenesis</td>
</tr>
<tr>
<td>Hereditary breast and ovarian cancer*</td>
</tr>
<tr>
<td>Hereditary forms of colorectal cancer*</td>
</tr>
<tr>
<td>Management of patients with inherited susceptibility to cancer*</td>
</tr>
<tr>
<td>Ethical, legal, social, and insurance issues related to cancer predisposition testing*</td>
</tr>
<tr>
<td>Methods of detecting genetic mutations*</td>
</tr>
<tr>
<td>Cancer associated genodermatoses, including melanoma and basal cell carcinoma</td>
</tr>
<tr>
<td>Hereditary syndromes that present as cancer in childhood</td>
</tr>
<tr>
<td>Genetic testing and screening for multiple endocrine neoplasia</td>
</tr>
<tr>
<td>Rare hereditary disorders associated with cancer susceptibility</td>
</tr>
</tbody>
</table>

*Most frequently requested domains for one hour continuing medical education lectures

Measuring outcomes

Knowledge questions derived from the course curriculum were developed and periodically updated to reflect scientific advances and improve content validity. Surveys consisting of 10 questions for one hour lectures and 30 questions for full day conferences were created from a bank of 127 items. The questions measured knowledge of key concepts in applied genetics, such as recognizing inheritance patterns and clinical features of specific hereditary cancer syndromes and questions on syndrome specific surveillance and management strategies. Question construction was examined and revised in consultation with a psychometrician (G C Uman). Item difficulty and discrimination indices were calculated, and distractor analysis was conducted on multiple choice questions. At the time of analysis the 127 questions in the item bank had an average difficulty of 0.64, slightly higher (easier) than the ideal average difficulty of 0.50. Ten questions that were administered to the most participants (n = 180) had an internal consistency reliability of coefficient α = 0.65 (acceptable for continuing medical education or education research, but not for credentialling standards). The discrimination index for those questions ranged from 0.16 to 0.43, and averaged 0.31. A cover sheet requested basic demographics such as profession (MD, registered nurse, etc.), areas of practice specialty and professional focus (clinical, research, academic); personal identifiers were not requested.

Knowledge surveys were administered to participants in randomly selected community hospital one hour lectures sampled during years two to five of the programme and to all participants of each full day conference. Surveys were administered before lectures and repeated after the sessions to measure immediate postintervention knowledge gain. Standard continuing medical education evaluations were collected and summarized to measure participant feedback on presentations and perceived value and utility of the information provided.

A postcourse practice survey elicited how clinicians applied cancer genetics information to their practices one year after attending a full day cancer genetics conference. The survey requested professional demographic information but was otherwise anonymous, and contained nine items about the applicability and utility of conference information in clinical practice and to determine participants’ interest in continued cancer genetics education. Logistical and privacy challenges limited opportunity for long term follow-up of participants in community hospital grand rounds continuing medical education lectures (contact information for participants at community hospital continuing medical education lectures was not available to CGEP faculty staff). We therefore piloted the practice outcomes survey on 114 eligible participants from the 2002 CGEP full day conference who stated that they were clinical practitioners. The survey was disseminated by mail 11 months after the conference. A modest incentive of a $5.00 coffee coupon was included in all surveys. In an adaptation of Dillman’s methodology, a second mailing was sent six weeks after the initial mailing to increase response rate. The second mailing also included a one page fact sheet
summarising guidelines for referral for genetic cancer risk assessment to reinforce clinician learning.

RESULTS
Knowledge outcomes
Seven hundred and ten fully completed presession and postsession knowledge surveys were available for analysis. The proportion of registered clinicians who completed preliminary surveys fully was greater from full day conferences than that from one hour grand rounds lectures (table 3). Approximately 88% of full day conference participants practiced primarily in a clinical setting, and 12% were from a primarily academic or research setting. The number of participants with complete data sets and increment in knowledge improvement is summarised in table 3. Postcourse test scores demonstrated a significant overall increase in participant knowledge in both settings: 48% at one hour seminars (p<0.001); 38% at full day conferences (p<0.001). Of physicians who responded to knowledge surveys, 39% were primary care physicians, 14% were gynecologists, 12% were oncologists, and 11% were gastrointestinal specialists; the remaining 24% of physician respondents did not indicate their specialties. The knowledge of all physicians who provided their specialty information increased significantly (p<0.001), but no particular specialty outperformed any other at precourse or postcourse testing (p = 0.383).

Though not statistically significant, baseline (presession) scores were higher across disciplines among participants in full day conferences (48% correct answers) compared with those from one hour lectures (40% correct answers), possibly reflecting selection for clinicians interested or involved in cancer genetics among attendees of full day conferences. The proportional postsession knowledge gain was similar for both one hour lecture and full day conference participants. Analysis of scores by clinical discipline (MDs, registered nurses, and genetic counsellors) demonstrated that the three clinical disciplines began with significantly different levels of cancer genetics knowledge, as shown in fig 1 (p=0.001). Baseline knowledge was greatest among genetic counsellors, who have focused training in general genetics (62% correct answers at baseline among genetic counsellors, compared with 46% for MDs and 38% for registered nurses). A significant improvement in postsession knowledge was realised across all three disciplines.

Long term follow up survey of 114 clinician participants of the 2002 CGEP full day conference yielded 69 responses; 52 were received with initial mailing (46%), and 17 additional surveys were returned with follow up mailing, for an overall 60% response rate. Thirty three respondents were physicians, 22 registered nurses, 10 genetic counsellors, two PhDs not otherwise specified, and two were clinicians who did not indicate their specialty. Overall, 78% of respondents indicated that their awareness of issues related to cancer genetics improved; 85% indicated that the information was applicable to their work; 77% of respondents used course information and referral guidelines to counsel patients about risk or to refer patients for further risk assessment; and 80% shared the information with other clinicians, indicating dissemination of information beyond the conference participants.

Response by profession (MDs, registered nurses and genetic counsellors) to items addressing impact on clinical practice is illustrated in fig 2. Ninety one percent of MDs found the information applicable to their work, and 85% reported using the information to counsel or refer patients for cancer risk assessment. While a similar percentage of registered nurses (82%) and genetic counsellors (80%) reported that cancer genetics was applicable to their work, 64% of registered nurses reported using the information to counsel and refer patients, compared with 80% of genetic counsellors. MDs and registered nurses were more likely than genetic counsellors to share the information with other clinicians (81% and 86%, respectively). These differences are probably related to differences in clinical setting and focus among disciplines, and distinctions in the profiles and needs of patients most frequently seen. A subset of respondents (38%) reported changes in their referral practice, with several reporting referral of 1–12 patients for cancer risk assessment in the 11 month interim since the conference. An increase in both the number and appropriateness of referrals to the Cancer Screening and Prevention Program was also noted after delivery of lectures and courses. Although formal referral tracking was not performed, a majority of referrals were directly linked to institutions where CGEP lectures were conducted. This was especially evident after the delivery of one hour lectures to the programme’s satellite clinic sites, where lectures are delivered as a progressive series over time. This approach reinforces basic cancer genetics concepts, while broadening the participants’ practical understanding of cancer genetics concepts and syndromes.

Program assessment and satisfaction
Postcourse participant assessments demonstrated satisfaction with the content and delivery of the CGEP curriculum and a high perceived relevance of the information to participant practice, averaging 4.5 on a scale of 1–5 (5 = highly satisfied, 1 = not satisfied). Of note, physician

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Summary of cancer genetics knowledge outcomes before and after educational session, among participants of the cancer genetics education programme (CGEP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery Format</td>
<td>Sessions evaluated</td>
</tr>
<tr>
<td>One hour lectures</td>
<td>25</td>
</tr>
<tr>
<td>Full day conference</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
</tr>
</tbody>
</table>
Figure 2 Clinical impact of cancer genetics education on the practices of community based clinicians.

While it was not possible to determine precisely the relationship between the educational intervention and subsequent referral of patients, an estimated 70% of MDs from our patient referral base have attended one or more of our continuing medical education lectures or full day conferences. We have also observed that once physicians begin to refer patients, they continue to make referrals. This finding may be due in part to the confidence gained through deliberative practice and to learning reinforcement attained through the evidence based risk management recommendations in all clinical consultation notes copied to these clinicians. Metrics on knowledge changes and changes in referral patterns of continuing medical education participants can be improved through streamlined knowledge surveys and by eliciting volunteer participation in long term practice impact surveys.

The continuing medical education mechanism has the potential to complement the emerging body of literature and other educational resources related to cancer genetics risk assessment by presenting complex information in a manner that is relevant to the general practitioner or specialist in the clinical setting. Targeted continuing medical education that incorporates evidence based content and case based learning should lead to better identification and care of individuals with increased cancer risk. Ongoing efforts by the City of Hope Cancer Genetics Education Program include outreach to clinicians practicing in underserved communities and managed care plan utilisation review committees, restructuring the content of full day seminars to include cancer genetics as part of a broader curriculum addressing cancer prevention and control issues of practical utility to primary care physicians, and expansion of the CGEP website to include online continuing medical education accredited learning modules.

ACKNOWLEDGEMENTS

We wish to thank Alejandra Wright, Bernadette Pabillare, and Alexandra Arad for assistance with programme coordination, data collection, and manuscript preparation.

Authors’ affiliations
K R Blazer, S R Sand, D J MacDonald, J N Weitzel, Department of Clinical Cancer Genetics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
REFERENCES

