Tissue dependent co-segregation of the novel pathogenic G12276A mitochondrial tRNA\textsubscript{Leu(CUN)} mutation with the A185G D-loop polymorphism

G Zsurka, R Schröder, C Kornblum, J Rudolph*, R J Wiesner, C E Elger, W S Kunz

METHODS

Case description

A 28 year old female patient presented with a history of mild exercise intolerance starting in early childhood. At the age of 13 years she developed chronic progressive bilateral ptosis and restriction of extraocular eye movements. Apart from mild CPEO, neurological examination was normal. Further medical history was uneventful. She has two healthy brothers aged 16 and 13 years. Her mother, who died in a traffic accident, was reported to be free of neuromuscular symptoms. The study was conducted following the guidelines of the University of Bonn ethical commission and informed consent was obtained from all investigated subjects or their parents.

Muscle histology

Consecutive cryostat sections of muscle biopsy (6 μm) were stained for Gomori’s trichrome, succinate dehydrogenase (SDH), myosin ATPase, and COX as described by Dubowitz.7

Quantitative single-fibre analysis of histochemical COX and SDH activities using fibre specific grey level determinations of 12 bit video images was performed as described previously.8 In brief, video images of identically stained adjacent sections were acquired with monochromatic illumination at 625 nm (for SDH, with a DIF 625 double interference filter) or at 450 nm (for COX, with a DIF 450 double interference filter) using an IX-70 microscope (Olympus, Tokyo, Japan).

Key points

- We present the co-existence of two heteroplasmic mitochondrial DNA point mutations in a patient with a mild form of chronic progressive external ophthalmoplegia (CPEO).
- In a muscle biopsy showing abundant ragged-red fibres we identified a novel heteroplasmic G12276A mutation, residing in the mitochondrial tRNA\textsubscript{Leu(CUN)} gene, as well as a previously described heteroplasmic D-loop polymorphism (A185G). Both mutations were also present in fibroblasts, buccal mucosa, and blood, although at much lower levels than in skeletal muscle. Northern blot analysis demonstrated a 50% reduction of tRNA\textsubscript{Leu (CUN)} in the patient’s skeletal muscle in comparison to controls, thus explaining the general failure of mitochondrial translation. A severe defect of oxidative phosphorylation was found in muscle fibres harbouring high loads of the G12276A and A185G mutations. Single-fibre PCR and allele specific PCR revealed that three allelic combinations of the two heteroplasmic mutations were present.
- The genetic and biochemical analysis of our CPEO case demonstrates that the origin of the dramatic impairment of respiratory chain function in the patient’s muscle lies in the instability of the mitochondrial tRNA\textsubscript{Leu(CUN)}, a consequence of the heteroplasmic G12276A mutation. The pseudo-correlation of the neutral 185G D-loop polymorphism with the pathological biochemical phenotype can be explained by a co-segregation of the pathogenic 12776A allele with the 185G allele. The apparent contradiction between dramatic biochemical and mild clinical phenotype is probably due to the muscle specific segregation of the pathogenic mutation that might be routed by the associated allele of the D-loop polymorphism.

Abbreviations: COX, cytochrome c oxidase; CPEO, chronic progressive external ophthalmoplegia; CS, citrate synthase; SDH, succinate dehydrogenase
equipped with a 12 bit high resolution CCD camera (model Spot RT, Diagnostic Instruments, Burroughs, MI, USA). The image analysis was performed using the MetaMorph software package (Universal Imaging, West Chester, PA, USA). For the calculation of activity ratios the individual average single-fibre grey value readings were converted into absorbance values (ΔA) using the formula: ΔA = log10(grey value of background/grey value of fibre).

The linearity of the histochemical COX and SDH staining reactions (up to 40 min developing time for both COX and SDH) was tested in control experiments. For immunohistochemistry we used the mouse monoclonal antibodies against subunit I of human COX and the 15 kDa protein of human complex I (product of the NDUF5 gene) (Molecular Probes, Eugene, OR, USA). The immunochemical reaction was developed with DAB using a peroxidase labelled anti-mouse secondary antibody (Dianova, Hamburg, Germany). Fibre types were distinguished based on the myosin ATPase stainings at pH 4.6 and pH 9.3.

Enzyme activities

The activities of rotenone sensitive NADH:CoQ1 oxidoreductase, COX, and citrate synthase (CS) in skeletal muscle homogenates were measured spectrophotometrically as described previously.9

mtDNA mutation analysis

Genomic DNA was extracted from 10 ml aliquots of EDTA anticoagulated blood using a salting out method or from 30 mg skeletal muscle specimens with the QiaAmp DNA Mini Kit (Qiagen, Hilden, Germany). The mitochondrial genome was pre-screened for mutations using an automated Mini Kit (Qiagen, Hilden, Germany). For the detection of the G12276A point mutation mismatch PCR were designed to introduce either a novel MboI restriction site in the wild type allele (5'-CTAAGACCA-3') or from the mutant 5'-CTAAGACCATCGTGTAGG-3' were used together with the TaqMan probe FAM-CCCCCCCTCT(DABCYL)ACCCCCCTCTAGAGGCap. The thermocycler was programmed as follows: 95°C for 10 min; and 40 cycles of 95°C for 15 s and 62.5°C for 1 min.

Northern blot

Total RNA was isolated from 30–50 mg pieces of muscle biopsy or 10⁶ cells of cultured 143B human osteosarcoma cells. Aliquots (2 μg) of total RNA were fractionated on a denaturing 13% polyacrylamide gel containing 8 M urea and run in 1xTBE buffer. After electro-blotting to a nylon membrane (GeneScreen, NEN Life Science Products, Boston, MA, USA), samples were hybridised with one of the following radioactively labelled probes: end labelled oligonucleotides 5'-TGCAACCAAAATTGGGGCGC-3' for rRNAeuc(U/C) and 5'-GGGTGTTGATGCGGCGTAC-3' for SS rRNA, or PCR products spanning the complete sequence of rRNAeuc(U/C) and ND1 mRNA, respectively, labelled by the random priming method. We used the hybridisation conditions for the rRNAeuc(U/C) probe as described by El Meziane et al. Other probes were hybridised overnight at 65°C in a buffer containing 1 M NaCl, 10% dextran sulfate, and 1% SDS. The membrane was then washed twice for 10 min in 2xSSC (0.1% SDS) buffer and once in 0.1xSSC (0.1% SDS) buffer at 65°C. Signals were detected by autoradiography.

RESULTS

Histological and biochemical consequences of a novel mitochondrial tRNA mutation

Histological analysis of a skeletal muscle biopsy revealed abundant ragged-red fibres (asterisks, fig 1A) as well as multiple SDH positive fibres (fig 1B) that were negative for COX staining (circles, fig 1D). Furthermore, immunostaining showed decreased immunoreactivity for the mitochondrial encoded COX subunit I (fig 1C) in these fibres. Additionally, the immunostaining for the nuclear encoded 15 kDa complex I subunit was also lower indicating decreased stability of the entire complex (fig 1E). In accordance with the very high proportion of affected fibres, a severe reduction of CS normalised activities of respiratory chain complex I and COX in skeletal muscle homogenates could be demonstrated by biochemical analysis (fig 1F).

After excluding the presence of large scale deletions by Southern blot analysis, WAVE analysis and sequencing of the complete mitochondrial genome was performed. The sequence analysis of DNA isolated from skeletal muscle revealed the following known polymorphisms, all apparently homoplasmic, defining the patient’s mitochondrial haplogroup as “J”**: 73G, 228A, 263G, 295T, 311insC, 462T, 95°C for 10 min, samples were divided into two to three aliquots and directly subjected to mismatch PCR and restriction analysis, as described above.

Allele specific PCR

Primers specific for each of the two allelic of 185 (5'-CACACCTTGTAGTATGTTG[C/T]-3') were used together with primer 12119F to amplify a 4.7 kb PCR fragment comprising the 12276 polymorphic site. The PCR program included the following steps: 95°C for 5 min; 25 cycles of 95°C for 30 s and 68°C for 8 min; and finally 72°C for 7 min. A 1 μl sample of the 25 μl reaction was applied in a second round of mismatch PCR performed as described above. In allele specific real time PCR reactions primers 5'-GGGCTTTCTCAA TTITAAAAAG-3' and 5'-ACAATGGATTCTATATAATGGG-3' were used together with the TaqMan probe FAM-CCCCCAAAAATTGGGGCGC-3' and 5'-GGGTGTTGATGCGGCGTAC-3' for SS rRNA, or PCR products spanning the complete sequence of rRNAeuc(U/C) and ND1 mRNA, respectively, labelled by the random priming method. We used the hybridisation conditions for the rRNAeuc(U/C) probe as described by El Meziane et al. Other probes were hybridised overnight at 65°C in a buffer containing 1 M NaCl, 10% dextran sulfate, and 1% SDS. The membrane was then washed twice for 10 min in 2xSSC (0.1% SDS) buffer and once in 0.1xSSC (0.1% SDS) buffer at 65°C. Signals were detected by autoradiography.

mtDNA mutation analysis

Genomic DNA was extracted from 10 ml aliquots of EDTA anticoagulated blood using a salting out method or from 30 mg skeletal muscle specimens with the QiaAmp DNA Mini Kit (Qiagen, Hilden, Germany). The mitochondrial genome was pre-screened for mutations using an automated denaturing high pressure liquid chromatography (DHPLC) instrument (WAVE System, Transgenic, Omaha, NE, USA). Direct sequence analysis of 28 PCR fragments amplified from the whole mitochondrial genome was carried out on an automatic sequence analyser (ABI 377; Applied Biosystems, Foster City, CA, USA).

For the detection of the G12276A point mutation mismatched primers were designed to introduce either a novel MboI restriction site in the wild type allele (5'-CTAAGACCA ATGGATAAGCTGTAG-3', mismatch underlined) or a Tsp509I site in the mutant (5'-CTAAGACCAATGGATAAGCTGTAGAT-3', mismatch underlined). Either of these primers were used together with primer 12119F to amplify a 4.7 kb PCR fragment resulting in a 182 bp product that was subsequently digested with the corresponding restriction endonuclease. Restriction fragments were separated on 10% polyacrylamide gel, and visualised by SYBR Green I staining (Sigma-Aldrich, Steinheim, Germany). Proportions of wild type and mutant mitochondrial DNA were estimated from band intensities using Scion Image analysing software. The 185 polymorphism was detected in a similar manner, creating either a new HinP11 restriction site in the presence of “G” at position 185 by primer 5'-TTAAACAACCTTTAATAGTATGCGG-3', or a HpyCHFIV site in the presence of “A” by primer 5'-TTAAACACCTTTAATAGTGTACG-3'. Either of these primers were used together with primer 5'-CACCCTATTAA CCACCTACGG-3'. Conditions for mismatch PCR were as follows: 93°C for 10 min; 35 cycles of 95°C for 15 s, 95°C for 30 s, and 72°C for 40 s; and finally 72°C for 7 min.

Single-fibre PCR analysis

Identical fibres from four consecutive 10 μm sections of muscle, stained for COX activity and fixed in ethanol, were cut using the P.A.L.M. MicroBeam system operating with a nitrogen laser (P.A.L.M., Bernried, Germany) and catapulted to a tube cap containing 20 μl of magnesium free PCR buffer, 0.5% Tween 20, and 1 mg/ml proteinase K. After incubation at 55°C for 30 min and inactivation of the proteinase K at 95°C for 10 min, samples were divided into two to three aliquots and directly subjected to mismatch PCR and restriction analysis, as described above.
To establish a correlation between biochemical abnormalities and G12276A mutation loads in individual muscle fibres, we determined the levels of heteroplasmy in DNA samples isolated from single fibres. As shown in fig 3, fibres harbouring less than 75% of the mutant mitochondrial DNA exhibited normal COX/SDH ratios. However, mutation loads above the 80% threshold level resulted in severe deficiency of COX activity, in both type I and type IIa fibres.

The G12276A mutation leads to mitochondrial tRNA^{Leu(CUN)} instability

The G12276A change in the tRNA^{Leu(CUN)} gene resides in a highly conserved nucleotide position, which is likely to have a crucial role in forming the DHU-stem (fig 2C). The hypothesis that this particular mutation seriously disturbs the structure of the tRNA^{Leu(CUN)} was further underlined by Northern blot analysis. In comparison to the nuclear encoded 5S rRNA (which serves as a loading control), we observed a selective 50% reduction of the amount of tRNA^{Leu(CUN)} in total skeletal muscle RNA (fig 2D). The decrease of tRNA^{Leu(CUN)} was even more pronounced when compared to the level of the other mitochondrial tRNA for leucine, tRNA^{Leu(GGR)}. No relevant changes in the level of the ND1 transcript were found (data not shown). Since the Leu(CUN) codon is present at a high frequency in most protein coding mitochondrial genes, low levels of the tRNA^{Leu(CUN)} readily explain the general failure of translation of mitochondrial encoded proteins.

The D-loop polymorphism A185G co-segregating with the G12276A mutation

As outlined above, sequence analysis of the patient’s mitochondrial DNA revealed the presence of a previously described heteroplasmic polymorphism (A185G), located in one of the two hypervariable regions (HVR2) of the D-loop (fig 4A). Genetic analysis of skeletal muscle from the patient showed that approximately 60% of the mitochondrial DNA carried the 185G allele, whereas fibroblasts carried approximately 6%, and buccal mucosa and blood less than 3% of this allele (fig 4B, lanes 2–5, 9). The presence of 185G in blood at very low levels was further confirmed by allele specific PCR (data not shown). Similar to the patient, DNA samples from blood of the patient’s two brothers contained a minor fraction of the 185G allele in a predominantly 185A background (fig 4B, lanes 6, 7, 10, 11). Since the examined family belongs to a subgroup of the J* haplogroup characterised by the presence of the 185A allele, we refer to this polymorphism either as A185G or not G185A, despite that the 185G allele is more frequent in the general population.

To investigate whether mutations A185G and G12276A had occurred in a random or sequential order, we determined the allelic distribution of both mutations in 24 muscle fibres (fig 5). A wide range of heteroplasmy was detected for both mutations. We found three main populations of fibres: (i) the mutant 12276A allele was primarily found in fibres with a high percentage of the 185G allele (fig 5, upper right corner); (ii) fibres with a high percentage of the 185A allele were found to exclusively contain the 12276G wild type allele (fig 5, lower left corner); and (iii) certain muscle fibres also contained the 185G allele in combination with the wild type 12276G (fig 5, upper left corner). However, the fourth theoretically possible combination, 185A/12276A, was not detected suggesting a sequential order of early mutation events.

To exclude an experimental bias in single-fibre PCR studies, we set up a method to detect combinations of the two heteroplasmic mutations in bulk muscle DNA preparations from our patient. Using allele specific PCR and restriction analysis we found that the PCR fragments amplified by a 185G specific primer contained about 85% of...
the mutant 12276A allele and approximately 15% of the wild type 12276G allele. PCR products from the 185A specific amplification contained only the wild type 12276G allele (inset, fig 5). These findings are in full agreement with the single-fibre PCR data, thus confirming that the pattern of heteroplasmic observed in the patient’s muscle was created by a mixture of three distinct mitochondrial genomes.

The presence of three distinct mitochondrial genomes in diseased skeletal muscle prompted us to correlate the genetic findings with the results of our biochemical analysis. An important consequence of this non-random segregation of two heteroplasmic mutations was the observation that the mutation load of the pathogenic 12276A allele (fig 3) as well as the mutation load of the 185G D-loop polymorphism (fig 4C) showed an inverse correlation with COX enzyme activity in individual fibres. The distribution of the data points in fig 4C appears similar to that of a pathogenic mutation causing COX negativity above a high threshold level, although one has to note the existence of a few fibres with 100% 185G and normal COX activity. Since the 185G allele is the wild type genotype in the vast majority of the human population, this inverse genotype biochemical phenotype relationship has to be considered as a “pseudo-correlation”.

DISCUSSION

In the present study we describe the co-existence of two heteroplasmic mitochondrial DNA point mutations in a patient with chronic external ophthalmoplegia. One of the heteroplasmic mutations, A185G, is a well known polymorphism located in the non-coding D-loop region. Most of the human population carries “G” at this position, although the 185A genotype is also accepted as a normal sequence variation reported to be associated with at least two separate mitochondrial haplogroups (J*, U5). Therefore, it is very unlikely that the A185G mutation is directly involved in the biochemical defect responsible for the patient’s mitochondrial cytopathy. Our genetic and biochemical data suggest that the disease is caused by the other heteroplasmic mutation, G12276A, for the following reasons. (i) The G12276A mutation was found only in the affected individual, and was not detected in healthy family members, and is not present in the general population. (ii) The mutation is located at a highly conserved position in the DHU-stem of the mitochondrial tRNALeu(CUN). In accordance with this fact, the steady state levels of tRNALeu(CUN) found to be decreased in total skeletal muscle to a degree that corresponded to the mutation load of the mutated 12276A allele in bulk tissue. (iii) As expected in a case of a pathogenic mitochondrial tRNA mutation, a combined complex I/COX deficiency was observed in fibres with high loads of the G12276A mutation.

Interestingly, relative amounts of the “G” allele of the heteroplasmic D-loop polymorphism, A185G, also showed a reverse correlation with the activity of oxidative phosphorylation in individual muscle fibres, although it was not as closely linked as the 12276A allele. The apparent accumulation of the 185G allele in COX deficient muscle fibres is due to the non-random segregation of the two heteroplasmic mutations; the pathogenic 12276A phenotype was exclusively found in a case of a pathogenic mitochondrial tRNA mutation, a combined complex I/COX deficiency was observed in fibres with high loads of the G12276A mutation.
a 185G mitochondrial DNA molecule. Although high levels of both mutations were found only in the patient’s muscle, both mutations were also detected in other investigated tissues. Therefore, the pathogenic mutation must have happened at a very early stage of development or possibly during oogenesis. The D-loop heteroplasmy must have already existed at this time, which is in accordance with the presence of the D-loop heteroplasmy in family members (though they lack the pathogenic mutation). A sequential order of mutational events as the source of a double-heteroplasmic pattern seems evident (and in fact the few previous studies addressing double-heteroplasmy also showed the presence of triploplasm"). However, in light of a recent report demonstrating recombination-like events in human mitochondrial DNA, it remains unclear why a random distribution of the two heteroplasmic mutations (quadruplasm, that is the presence of all four theoretical allelic combinations) cannot be observed in our patient. One possible explanation could be that the heteroplasmic mutations segregated quickly to separated mitochondrial compartments and therefore the different genomes did not have the chance to come into physical contact. Alternatively, one could speculate that recombination-like events might be restricted to certain early periods of development and the second (pathogenic) mutation was generated only after such a phase of dynamic changes.

Our histological and biochemical findings in skeletal muscle clearly indicate that the G12276A mutation has serious consequences for tRNA Leu(CUN) stability and mitochondrial protein synthesis. The mutation loads in individual muscle fibres that are required for the loss of COX activity (around 80%) are lower than those established for other, more frequently encountered mitochondrial mutations, such as MERRF (above 85\%\) and MELAS (between 90\% and 95\%). Moreover, the percentage of COX negative and ragged-red fibres in muscle is unusually high (21\% and 16\%, respectively). However, these dramatic biochemical effects are in obvious contradiction with the mild clinical phenotype. One plausible
explained to resolve this contradiction would be tissue specific segregation of the pathogenic mutation. In full agreement with the patient’s symptoms which are restricted to skeletal muscle, high loads of the G12276A mutation were found only in muscle and not in other investigated tissues. Since skeletal muscle has a high glycolytic capacity able to produce sufficient ATP even under the condition of a serious disturbance of oxidative phosphorylation, mitochondrial mutations might escape to present severe clinical manifestations if they predominantly accumulate in muscle. It seems to us very tempting to speculate that the co-segregating D-loop allele could have an influence on the tissue distribution of the pathogenic mutation in our patient. Individuals with predominantly 185A genotype in blood usually show high levels of 185G in skeletal muscle (see Khrapko et al11; G Zsurka, unpublished data), thus muscle specific accumulation of 185G seems to be a general phenomenon. Filosto et al11 demonstrated that several other polymorphic sites in the D-loop region show muscle specific accumulation of one allele in patients with muscle restricted mitochondrial disease. Similarly, Battersby and Shoubridge20 showed in heteroplasmic mice that different mitochondrial genotypes that cannot be distinguished phenotypically might differentially accumulate in specific tissues. This would raise the possibility that neutral D-loop polymorphisms could route associated pathogenic mutations to specific tissues, thus having an important influence on the clinical manifestation of an individual mitochondrial disease.

ACKNOWLEDGEMENTS

The assistance of Dmitry Varlamov and Karin Kappes-Horn is gratefully acknowledged.

ELECTRONIC-DATABASE INFORMATION

Authors’ affiliations

G Zsurka, C E Elger, W S Kunz, Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
R Schröder, C Kornblum, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
J Rudolph, Transgenomic, Inc., Gaithersburg, MD, USA
R J Wiesner, Institute of Vascular Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany

This work was supported by the University of Bonn (BONFOR) and the Deutsche Forschungsgemeinschaft (Ku 911/11-3 to WSK, Schr 562/4-1 to RS, and WSK, Wi 889/3-3 to RIW).

Conflict of interest: none declared.

*Current address: NIH, Center for Scientific Review, Bethesda, MD, USA.

Correspondence to: Dr Wolfram S Kunz, Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany; wolfram.kunz@ukb.uni-bonn.de

Revised version received 5 July 2004
Accepted for publication 10 July 2004

REFERENCES

18 Petruzzella V, Morere CT, Sano MC, Bonilla E, DiMauro S, Schoen EA. Extremely high levels of mutant mDNAs co-localize with cytochrome c oxidase-negative ragged-red fibers in patients harboring a point mutation at nt 3243. Hum Mol Genet 1999;8:43–54.
20 Battersby BJ, Shoubridge EA. Selection of a mDNA sequence variant in hepatocytes of heteroplasmic mice is not due to differences in respiratory chain function or efficiency of replication. Hum Mol Genet 2001;10:2469–79.

www.jmedgenet.com