A gene responsible for autosomal dominant auditory neuropathy (AUNA1) maps to 13q14–21

T B Kim, B Isaacson, T A Sivakumaran, A Starr, B J B Keats, M M Lesperance

Hearing loss is most commonly defined as either conductive, affecting the sound conduction mechanism comprised of the external auditory canal, tympanic membrane, and middle ear ossicles, or sensorineural (SNHL), affecting the cochlea, the auditory nerve, or the central auditory pathway. However, the recent discovery that outer hair cells (OHC) generate otoacoustic emissions (OAEs) has allowed differentiation of sensory hearing loss (in which OAEs are absent) from neural hearing loss, which is caused by a lesion of inner hair cells and/or the auditory nerve. The hallmark of auditory neuropathy (AN), a neural type of hearing loss, is preservation of OAEs and abnormal or absent auditory brainstem responses.\(^1\) Most patients with SNHL are found to have a sensory type of hearing loss, and numerous genes for both syndromic and non-syndromic forms have been identified (Hereditary Hearing Loss Homepage, http://www.uia.ac.be/nalab/hh). However, none of the approximately 50 dominant (DFNA) loci are known to represent an auditory neuropathy phenotype.

AN may accompany peripheral neuropathy in a variety of dominant syndromes such as Charcot-Marie-Tooth disease\(^2\) and Freidreich’s ataxia.\(^3\) AN unassociated with peripheral neuropathy most commonly occurs as a sporadic or recessive trait,\(^4,5\) but X linked recessive\(^6\) and autosomal dominant\(^7\) forms have also been described. We have mapped a gene responsible for autosomal dominant auditory neuropathy in a multigenerational family from the United States to a novel locus, AUNA1 (auditory neuropathy, dominant, 1) on 13q14–21.

METHODS

The family is of European descent and was ascertained through two different probands by both the University of Michigan and the University of California at Irvine. The Institutional Review Boards of the University of Michigan Medical School, Louisiana State University Health Sciences Center, and the University of California at Irvine approved the study, and informed consent was obtained from all subjects. Four generations were available for study, including 47 family members informative for genetic analysis of whom 33 were affected, four were unrelated spouses, and 10 were unaffected (fig 1). All unaffected members were at least 18 years old. Two individuals (V1:9 and V1:13) had isolated high frequency sensorineural hearing loss consistent with their sex and age and were characterised as unaffected prior to linkage analysis. Information was obtained from questionnaires and interviews with family members. Standard pure tone audiometry was performed for all participants, and peripheral blood or buccal cell samples were obtained. The phenotype was extensively characterised by otologic and neurologic examination and by audiological, psychoacoustic, and neurophysiological testing.\(^8\) SLINK analysis predicted an average maximum LOD score of 7.90, with 100% of replicates greater than 3.0.\(^9,10\)

RESULTS

The hearing loss was inherited as an autosomal dominant trait with an average age of onset of 18.6 years. There were

Key points

- Auditory neuropathy (AN) is a type of hearing loss defined by the preservation of outer hair cell function and abnormal or absent auditory brainstem responses. We studied 47 members of a family of European descent from the United States segregating autosomal dominant non-syndromic AN.
- AUNA1 maps to a 5.47 cM interval on chromosome 13q14–21 between D13S153 (cenoteric) and D13S1317 (telomeric). Two individuals homozygous for the haplotype common to affected family members did not appear to be more severely affected than the heterozygotes. The maximum two point LOD score was 9.87 at \(\theta=0.019\) for D13S153.
- We conclude that AUNA1 is the first locus found responsible for autosomal dominant AN. Assessment of outer hair cell function by otoacoustic emissions or cochlear microphonics will clarify the prevalence of AN in non-syndromic deafness families.

Genomic DNA was isolated from peripheral blood lymphocytes and buccal epithelial cell samples using standard methodology. A genome scan was performed by the Center for Inherited Disease Research (CIDR, http://www.cidr.jhmi.edu/) as an automated fluorescent microsatellite analysis using a marker set of approximately 400 primer pairs with average spacing of 10 cM. Two point LOD scores assuming complete penetrance, gene frequency of 0.0001, and 0% phenocopy rate were calculated using the MLINK and ILINK programs from the LINKAGE package.\(^11\)

Fine mapping was performed by genotyping additional markers on chromosome 13 (fig 1) through the University of Michigan Sequencing Core. Allele frequencies and sizes were calculated by comparing the genotypes of CEPH individual 1347-02 to the CEPH genotype database (http://www.ceph.fr). To avoid overstated evidence for linkage caused by underestimation of marker allele frequencies, the allele frequency for the linked allele was not allowed to be less than 0.1.

Abbreviations: ABR, auditory brainstem responses; AN, auditory neuropathy; CIDR, Center for Inherited Disease Research; CMs, cochlear microphonics; ENU, N-ethyl-N-nitrosua; OAEs, otoacoustic emissions; OHC, outer hair cell; SNHL, sensorineural hearing loss; WS, Wolfram syndrome
Figure 1 Haplotype analysis of the AUNA1 family. Filled symbols indicate affected persons, open symbols indicate unrelated spouses, N indicates unaffected person, asterisk indicates unaffected person with high frequency sensorineural hearing loss, and ? indicates hearing test not available. Markers are indicated at the left ordered from centromeric (top) to telomeric (bottom), with obligate recombination events indicated. The haplotype assumed to carry the disease allele is indicated by the black bar, with other shading and hatching representing other haplotypes. Inferred alleles are indicated in parentheses. Solid lines in bars indicate phase unknown genotypes.
two consanguineous marriages in the family, one between
affected first cousins (III:5 and III:6) and the other between
affected second cousins (V:23 and V:24). Of seven affected
offspring available for study from these consanguineous
marriages, two (IV:9 and IV:13) were found to be homo-
ygous for the haplotype common to the affected family
members. However, with the exception of an age of onset at
the lower end of the range (8 and 9 years for IV:9 and IV:13,
respectively), there were no apparent clinical features differ-
entiating their phenotype from that of the heterozygotes.

The youngest affected family members presented with
auditory neuropathy, defined as preserved OHC function (as
documented by normal distortion product OAE responses),
and hearing loss documented by pure tone audiometry and/or
auditory brainstem response (ABR). Over time, OAEs
disappeared and thresholds increased, diagnostic of profound
sensorineural hearing loss. No evidence of cranial or
peripheral neuropathies was found. The results of the
haplotype analysis were consistent with our assumption of
complete penetrance after age 18, even though some
individuals reported onset as late as 45 years of age.
However, for most participants, the age of onset was
estimated based on that individual’s recollection. Affected
family members presented with a range of phenotypes which
will be described elsewhere.3 Intrafamilial variability is quite
common even for hereditary hearing loss segregating as a
simple Mendelian trait, most likely due to environmental and
secondary genetic factors.12

The maximum two point LOD score was 9.87 at θ = 0.019
for D13S513 (table 1). No recombination events were
observed for D13S788 (LOD = 7.91 at θ = 0) or D13S1320
(LOD = 9.33 at θ = 0). A recombination event between
D13S153 and D13S788 in individual VI:12 defines the
centromeric end of the interval (fig 1). The telomeric end of
the interval is defined by an obligate recombination event
that occurred between D13S1320 and D13S1317, transmitted
to individuals IV:19, IV:21, and V:25. The interval between
D13S153 (centromeric) and D13S1317 (telomeric) spans
approximately 18 Mb (UCSC Genome Browser: http://genome.
ucsc.edu). The locus was designated as AUNA1 (http://
www.gene.ucl.ac.uk/nomenclature), and the interval does
not overlap with other known human or murine deafness
loci, corresponding to mouse chromosome 14 and a small
portion of mouse 8.

DISCUSSION

Great progress has been made in identifying genes respon-
sible for non-syndromic hearing impairment, with at least 40
genes cloned and an equivalent number mapped for
dominant, recessive, or X linked hearing loss (Hereditary
Routine pure tone audiometry testing of both air and bone
can distinguish conductive from sensorineural hearing loss.
However, very few studies of hereditary hearing
impairment have measured OAEs or cochlear microphonics
(CMs) to assess OHC function in affected subjects. Such
testing is necessary to differentiate sensory hearing loss
(suspected by disorders of the cochlear outer hair cells) from
neural hearing loss in which cochlear inner hair cells, the
auditory nerve, and/or the synapses between inner hair cells
and the auditory nerve are affected.

Patients with AN have absent or abnormal ABRs, absent
middle ear reflexes, normal OAEs, and cochlear microphonic
responses that invert with stimulus polarity.13 14 Thresholds
on pure tone audiometry may be normal or elevated to levels
ranging from mild to profound hearing loss. Evidence
suggests that some patients with AN are unlikely to benefit

from hearing aids.14 15 Approximately one third of patients
with AN will ultimately demonstrate loss of OHC function to
develop a true SNHL.16 Thus, OAEs, CMs, and ABRs must be
tested early in life to recognise a hearing loss as AN.

Animal models of auditory neuropathy have been induced
by carboplatin treatment of chinchillas17 18 and ouabain
infusion in gerbil cochleas.19 Both Bronx waltzer (bv), a
spontaneous mutant mapping to mouse chromosome 5,20
and Beethoven (Bth), arising from N-ethyl-N-nitrosurea
(ENU) mutagenesis of the tmc1 gene,21 demonstrate inner
hair cell loss preceding OHC loss. Patients with DFNA36
(MIM 606705) (Online Mendelian Inheritance in Man
(OMIM), http://www.ncbi.nlm.nih.gov/Omim) or DFNB7/11
(MIM 600974) deafness caused by mutations of the human
ortholog TMC1 (MIM 606706) are not reported to have

<table>
<thead>
<tr>
<th>Marker</th>
<th>LOD score at θ = 0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>θ</th>
<th>Zmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>D13S325</td>
<td>-7.10</td>
<td>1.31</td>
<td>1.68</td>
<td>2.24</td>
<td>2.63</td>
<td>0.63</td>
<td>0.176</td>
</tr>
<tr>
<td>D13S328</td>
<td>-7.10</td>
<td>5.84</td>
<td>4.16</td>
<td>2.54</td>
<td>1.07</td>
<td>0</td>
<td>7.57</td>
</tr>
<tr>
<td>D13S153</td>
<td>-7.10</td>
<td>6.69</td>
<td>6.49</td>
<td>4.99</td>
<td>1.78</td>
<td>0.019</td>
<td>9.87</td>
</tr>
<tr>
<td>D13S788</td>
<td>-7.10</td>
<td>6.11</td>
<td>4.27</td>
<td>2.46</td>
<td>0.87</td>
<td>0</td>
<td>7.91</td>
</tr>
<tr>
<td>D13S1320</td>
<td>-7.10</td>
<td>9.33</td>
<td>5.29</td>
<td>3.27</td>
<td>1.42</td>
<td>0</td>
<td>9.33</td>
</tr>
<tr>
<td>D13S1317</td>
<td>-7.10</td>
<td>4.66</td>
<td>3.50</td>
<td>2.12</td>
<td>0.85</td>
<td>0.05</td>
<td>4.93</td>
</tr>
<tr>
<td>D13S800</td>
<td>-7.10</td>
<td>-0.68</td>
<td>0.04</td>
<td>0.15</td>
<td>0.13</td>
<td>0.324</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table 1: Two point LOD scores for chromosome 13 markers

Figure 2 Ideogram of chromosome 13 indicating genotyped markers on 13q14–21 defining AUNA1 interval. Distances between markers are in centimorgans (cM) and were obtained from the Marshfield Center for Medical Genetics (http://research.marshfieldclinic.org/genetics/).
auditory neuropathy, but neither OAEs nor CMs were tested in these families (A Griffith, personal communication).

Mutations in the otoferlin (OTOF, MIM 603681) gene, first identified as the cause of DFNB9 (MIM 601071), appear to be a common cause of non-syndromic autosomal recessive AN. AN in conjunction with Charcot-Marie-Tooth disease has been attributed to mutations in the myelin protein zero (MPZ, MIM 159440), peripheral myelin protein 22 (PMP22, MIM 601097), gap junction protein, beta 1 (GJB1, MIM 304040), and early growth response 2 (EGR2, MIM 129901) genes. In addition, mutations in the N-myel downstream regulated gene (NDRG1, MIM 605262) gene are associated with the autosomal recessive disorder known as hereditary motor and sensory neuropathy-Lom. Acquired or environmental causes of AN include neonatal hyperbilirubinemia, anoxia, and prematurity.

True dominance is exceedingly rare, as there is usually a more severe phenotype (for example, embryonic lethality) associated with homozygosity as compared to heterozygosity for a mutated allele. The notable exception is Huntington’s disease (HD, MIM 143100), caused by non-syndromic low frequency sensorineural hearing loss, DFNA6/14/38 missense mutations shown to cause non-syndromic dominance. The notable exception is Huntington’s disease (HD, MIM 143100), caused by a non-syndromic low frequency sensorineural hearing loss, DFNA6/14/38 missense mutations shown to cause non-syndromic dominance.) associated with homozygosity as compared to heterozygosity for a mutated allele that causes dominant hearing loss in both of his consanguineous parents. While Wolfram syndrome (WS, MIM 222300) is caused by homozygous and usually inactivating mutations in the WFS1 (MIM 606201) gene, one patient homozygous for the AT16T mutation in WFS1 had only juvenile onset insulin dependent diabetes mellitus and cataracts without the optic atrophy necessary for a diagnosis of WS. AT16T is one of many heterozygous missense mutations shown to cause non-syndromic dominant low frequency sensorineural hearing loss, DFNA6/14/38 (MIM 609065).

We would predict that the mutation in this family will be found to be non-inactivating, for example, a missense mutation, rather than a null mutation resulting in haploinsufficiency. In the latter case, the complete lack of functional protein in the homozygotes would be expected to result in a more severe phenotype. Prospective clinical studies would be necessary to determine whether the homozygotes have an earlier age of onset. Although we could not identify any clinical features unique to the homozygous individuals in this study, identification of the AUNA1 gene may suggest targets for clinical testing based on knowledge of the gene’s function.

Numerous candidate genes of interest map to the AUNA1 interval (UCSC Genome Browser: http://genome.ucsc.edu) including diaphanous homolog 3 (DIAPH3), several proto-oncogenes (PDCD9, MIM 603581), PDCDH (MIM 603580), PCDH17, and PCDH20), and genes implicated in protein and/or ion transport (WD repeat and FYVE domain containing 2 (WDFY2) and potassium channel regulator gene, KCNRG (MIM 607947)).

We report here a novel locus, AUNA1, which is responsible for progressive autosomal dominant auditory neuropathy in a large kindred from the United States. Our strategies to identify the AUNA1 gene will include recruiting additional family members, genotyping additional markers in DNA samples from existing and new family members to look for new recombination events to further narrow the interval, and testing candidate genes within the interval. Identification of a gene responsible for auditory neuropathy will allow for genetic screening in sporadic cases or in families too small for genetic linkage analysis. In addition, assessing OHC function by OAE or CM testing in patients and families with non-syndromic hearing loss will lead to a better understanding of the variability among phenotypes.

Acknowledgements
We thank the family for their participation. We thank Laura Miller for assistance in preparation of the manuscript.

Authors’ affiliations
T B Kim, B Isaacson, A Sivakumar, M M Lesperance, Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI 48109-0241, USA
A Starr, Department of Neurology, University of California at Irvine, Irvine, CA 92717, USA
B J B Keats, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA

This work was supported by grants from the National Institute on Deafness and Communication Disorders DC00161 (Lesperance) and DC02216 (Starr). Genotyping services were provided by the Center for Inherited Disease Research (CIDR) and the University of Michigan Sequencing Core. CIDR is fully funded through a federal contract from the National Institutes of Health to the Johns Hopkins University, Contract Number N01-HG-65403.

Conflict of interest: none declared.

*Current address: Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.

Correspondence to: Dr Marc M Lesperance, Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, F6905 Mott, Box 0241, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0241, USA; lesperan@umich.edu

Revised version received 30 April 2004 Accepted for publication 4 May 2004

References

