Mental retardation and cardiovascular malformations in NF1 microdeleted patients point to candidate genes in 17q11.2

*M Venturin, *P Guarnieri, F Natacci, M Stabile, R Tenconi, M Clementi, C Hernandez, P Thompson, M Upadhyaya, L Larizza, P Riva

NF1 microdeletion syndrome is determined by haploinsufficiency of the NF1 gene and its flanking regions; NF1 microdeleted patients show a more severe phenotype than observed in classical NF1 patients.

The aim of this study was to verify the presence of specific clinical signs of NF1 microdeletion, by combining clinical and genetic evidence from 92 deleted patients, 14 newly characterised and 78 already published.

Statistical analysis, done by comparing the frequency of 10 clinical signs between NF1 microdeleted patients and the whole NF1 population, showed that the most common extra-NF1 clinical signs in microdeleted patients were learning disability, cardiovascular malformations, and dysmorphisms.

Using bioinformatic tools, the deletion gene content of microdeleted and general NF1 patients were learning disability, cardiovascular malformations, and dysmorphisms.

Key points

- NF1 microdeletion syndrome is determined by haploinsufficiency of the NF1 gene and its flanking regions; NF1 microdeleted patients show a more severe phenotype than observed in classical NF1 patients.
- The aim of this study was to verify the presence of specific clinical signs of NF1 microdeletion, by combining clinical and genetic evidence from 92 deleted patients, 14 newly characterised and 78 already published.
- Statistical analysis, done by comparing the frequency of 10 clinical signs between NF1 microdeleted patients and the whole NF1 population, showed that the most common extra-NF1 clinical signs in microdeleted patients were learning disability, cardiovascular malformations, and dysmorphisms.
- Using bioinformatic tools, the deletion gene content of microdeleted and general NF1 patients were learning disability, cardiovascular malformations, and dysmorphisms.
- When present in an NF1 patient, dysmorphisms, cardiac anomalies, and learning disability are signs indicating NF1 microdeletion.

METHODS

Patients

In order to generate a database that was as comprehensive as possible, we data-mined the NCBI Entrez Pubmed and Med Miner repository and retrieved all the individually reported cases of patients affected by the NF1 microdeletion syndrome whose clinical phenotype was also described.

Signs included among the diagnostic criteria for NF1 were excluded (with the exception of plexiform neurofibroma), as were minor sporadically present signs for which no incidence figures were available.

Abbreviations: DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, fourth edition; FISH, fluorescent in situ hybridisation; MPNST, malignant peripheral nerve sheath tumour; NF1, neurofibromatosis type 1

www.jmedgenet.com
This selection led to a total of 21 papers describing individually reported cases for a total of 78 patients. We excluded seven well characterised patients carrying mosaic deletions from both published reports and the newly characterised cohort.

The references of the extracted articles are 3–14 and 17–25. Among the 78 patients described in published reports, seven were familial microdeletions and in two cases the parent showed a mosaic condition. The remaining apparently sporadic patients can be considered founder deletion carriers, although we cannot exclude low grade or tissue specific mosaicism in the asymptomatic parents. Conversely the 14 new NF1 deleted patients were recruited by means of loss of heterozygosity (LOH) studies and characterised by FISH (fluorescent in situ hybridisation) analysis. Extension of FISH to the patients’ parents contributing the deletion allowed us to identify a mosaic deletion in parents of cases 65 and 94, and to exclude low grade mosaicism in the remaining cases.

Both the newly described patients and those described in the published reports fulfilled the NIH diagnostic criteria. We classified microdeletions as being affected by mental retardation only in those cases where intelligence quotient (IQ) was reported or where an explicit statement of mild to moderate to severe mental retardation was declared by the investigators. When IQ was known, patients were classified as having mild (IQ = 50–70) or moderate to severe mental retardation (IQ<50) according to the DSM-IV criteria.

With respect to cardiovascular malformations, we referred to large surveys of NF1 patients investigated by conventional methods for the diagnosis of cardiovascular malformations (auscultation, radiography, electrocardiography, echocardiography), as these methods were applied to the NF1 microdeleted patients described.

The data on the percentages of each clinical sign in classic NF1 patients were drawn from published reviews. These reference percentages may also include patients carrying the NF1 deletion, the relative percentage of which is estimated to be 5–20%.

Database construction

The published reports and the recruited patients allowed us to build a common data structure in which to tabulate the information. For each patient, we added any new clinical sign that had not been included previously, thus obtaining a relational database with 103 fields. The presence of a specific sign was attributed only when it was explicitly reported and formalised in binary fashion (that is, present or not present). When a field could not be completed because of lack of information or an ambiguous interpretation, it was defined as null and was not counted.

Statistical analysis

The analysed features were studied as discrete variables. As the clinical data concerning each feature were not available for all the patients, the total number of patients for whom the data were applicable is given in each data entry. The frequency of each sign was calculated as the ratio between the studied features and the deletion specific gene content was identified, using the integrated maps available on NCBI (http://www.ncbi.nlm.nih.gov/genome/seq/) and UCSC (http://genome.csc.ucsc.edu/).

Information concerning the expression patterns, the presence of specific functional domains in the protein products and their putative cellular role, and the existence of hortologous genes in model organisms was obtained from the following internet pages: LocusLink (http://www.ncbi.nlm.nih.gov/LocusLink/), Human unidentified gene-encoded large proteins analyzed by Kazusa cDNA Project (HUGE) (http://www.kazusa.or.jp/huge/), SAGE (http://www.ncbi.nlm.nih.gov/SAGE/), BODYMAP (http://bodymap.imgs.u-tokyo.ac.jp/), NCi60 cancer microarray project (http://genome-www.stanford.edu/nci60/) and, for the homologous murine sequences, mouse genome informatics (http://www.informatics.jax.org/).

The sequence homologies identified in Mus Musculus by means of a BLAST search were confirmed using an analysis in MGI and e The Mouse Genome Sequencing Consortium Mouse Genome Browser, in which the hortologous regions have been mapped. The rat data were drawn from Rat genome data (http://www.informatics.jax.org/rat/).

The functional domain analysis for the proteins encoded by the studied genes was undertaken using the tools and links in the expert protein analysis system (EXPASY) molecular biology server (http://www.expasy.ch/).

RESULTS

Clinical evaluation of NF1 patients

In order to verify the presence and incidence of specific clinical signs in NF1 microdeleted patients in comparison with those with classic neurofibromatosis 1, we considered a sample of 92 microdeleted patients (14 novel clinical descriptions and 78 from published reports).

Table 1 shows the clinical signs and symptoms on which it was possible to make the comparative analysis. Among the clinical signs found to be more frequent in NF1 microdeleted patients than in the classic NF1 patients, there was a significant difference (p<0.001, that is, 99.9%) in the incidence of dysmorphic features, hypertelorism, mental retardation, and cardiovascular malformations (table 1).

When available, we also extracted information on the extent of the deletion when molecular cytogenetic characterisation had been undertaken. Of the 92 microdeleted patients, 44 underwent microsatellite or FISH and long range polymerase chain reaction (PCR) analysis, including 28 for whom the information was retrieved from published reports, as described in the present study, plus two previously reported cases that had been precisely characterised by our group using FISH.

Table 2 lists the clinical features of the 14 previously unreported microdeleted patients, including those who differed from the NF1 classical phenotype in the statistical analysis. Four patients had short stature or retarded growth, one had macrocephaly, and one was microcephalic. Only one patient had excessive growth. Nine patients had dysmorphism, only two had mild mental retardation, and three had cardiovascular diseases. Examples of patients with facial dysmorphism from the newly described microdeleted group are shown in fig 1.

The 44 finely characterised patients were then grouped on the basis of the extent of their deletion to explore possible genotype–phenotype correlations. Thirty seven patients carrying REP deletions made it possible to explore phenotypical variability within a subset having the same deletion: dysmorphic features, mental retardation, and cardiovascular anomalies were present in, respectively, 34 of 37 patients (92%), 12 of 26 (46.1%), and 7 of 37 (19%).

Eight patients with unusual sized deletions (one or both endpoints not falling within the NF1 REPs) were a further main resource for the genotype–phenotype correlation study of NF1 patients carrying different deletions. They included
three patients (BL, 106-3, BUD)5, 9, 11 carrying large deletions that extended centromerically to REP-P and telomerically to REP-M, all of whom suffered from mental retardation; two (BL and 106-3) also had dysmorphic features, but only BL had hypertelorism. Patients 113-1 and TOP11 had small deletions where the telomeric endpoint lies within REP-M but the centromeric endpoint was localised 5’ of the \textit{NF1} gene: both showed mental retardation and facial dysmorphisms (including hypertelorism in patient 113-1). Atypical deletions included case 118 (present study)—who suffered from seizures and in whom the telomeric boundary was between \textit{NF1} intron 6 and exon 10b, whereas centromerically

\begin{table}
\centering
\caption{Table 1: Presence of specific clinical signs in 92 NF1 microdeleted patients vs NF1 patients according to published reports.}
\begin{tabular}{|l|c|c|c|c|}
\hline
\textbf{Clinical signs} & \textbf{NF1 microdeleted patients} & \textbf{NF1 patients} & \textbf{Discordance} & \textbf{az-value} \\
\hline
Plexiform neurofibroma & 88 & 25 & 28 & 25 to 30 & No (0.36 to 0.13) \\
Macrocephaly & 63 & 20 & 32 & 40 to 50 & No (1.6 to 6.48) \\
Facial dysmorphismsb & 88 & 69 & 78 & 5 to 15 & Yes (1065.8 to 264.6) \\
Hypertelorism & 64 & 27 & 42 & 15 & Yes (48.60) \\
Learning disability & 63 & 36 & 57 & 4 to 8 & Yes (702 to 300.1) \\
Seizures & 56 & 5 & 9 & 3.8 to 6 & Yes (711 to 1.5) \\
Cardiovascular malformationsc & 61 & 11 & 18 & 2.1 & Yes (120.39) \\
Deafness & 92 & 2 & 2 & 5.3 & No (2.05) \\
Scoliosis & 60 & 9 & 15 & 10 to 30 & No (2.5 to 7.5) \\
Pectus excavatum-carinatum & 58 & 10 & 17 & 20 & No (0.45) \\
\hline
\end{tabular}
aThe discordant values between the two groups of patients and the relative clinical signs are given in bold.
bIncluding the following signs, each observed in at least one patient: coarse face, flat occiput/brachycephaly, faciocranial asymmetry, prominent forehead, frontal bossing, ptosis, downsloping of deep set eyes, epicanthic fold, hypertelorism, strabismus, large nose, prominent nose, high nasal bridge, broad nasal bridge, broad nose, bulbous nasal tip, large ears, low set ears, malar hypoplasia, wide philtrum, prominent philtrum, small mouth, thick lips, micrognathia, small pointed chin, low posterior hairline.
cIncluding: atrial septal defect, ventricular septal defect, patent ductus arteriosus, pulmonary stenosis, dilated aortic valve, hypertrophic cardiomyopathy, mitral valve prolapse.
\end{table}

\begin{table}
\centering
\caption{Table 2: Clinical features of the 14 newly described patients carrying NF1 microdeletion characterised by refined fluorescent in situ hybridisation (FISH) analysis.}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Patient} & \textbf{Age (years)} & \textbf{Sex} & \textbf{Deletion type} & \textbf{Growth defects} & \textbf{Dysmorphic} & \textbf{Learning disability} & \textbf{Cardiovascular malformation} & \textbf{Other features} & \\
\hline
119 & 4 & M & REP & No & No & No & – & \textit{Optic glia, seizures} \\
118 & 5 & M & REP & No & No & No & – & \textit{Broad neck, 3 NFs} \\
93 & 6 & M & cent-REP & 90th centile, macrocephaly & Yesd & No & HCM & \textit{Small hands/feet, short fingers} \\
65 & 6 & M & REP & Height 3rd centile, microcephaly 2nd centile & Yese & IQ48 & VSD (upper part) & \textit{Small hands/feet, short fingers} \\
116 & 6 & M & REP & Short stature 10th centile & Yesf & IQ54 & Mitrail insufficiency & \textit{MCLS, hypoplasticosia, pectus excavatum, genu valgus, pes planus, umbilical hernia} \\
72 & 7 & M & REP & No & Yesg & – & IQ50 & \textit{Small hands/feet, short fingers} \\
76 & 8 & F & REP & No & Yesh & – & – & \textit{–} \\
94 & 8 & F & REP & No & Yesi & – & – & \textit{–} \\
75 & 9 & F & REP & No & Yesj & – & – & \textit{–} \\
85 & 11 & M & REP & No & No & IQ77 & – & \textit{MCLS} \\
7 & 11 & M & REP & No & Yesk & Speech impairment & – & \textit{MCLS, amblyopia, thalamic hamartoma} \\
82 & 23 & F & REP & Short stature & No & No & – & \textit{Hearing impairment, Noonan-like NFs, required special education, short and broad fingers and toes} \\
77 & 23 & U & REP & Overgrowth >97th centile & Yesl & Speech impairment, LD & – & \textit{Delayed motor development, short and broad feet, fifth finger clinodactyly} \\
78 & 23 & U & REP & – & Yesm & Speech impairment & – & \textit{Delayed motor development, short and broad feet, fifth finger clinodactyly} \\
\hline
\end{tabular}
dHypertelorism, epicanthic folds, low set ears, low posterior hairline.
eHypertelorism, downsloping eye, strabismus, large and prominent nose with high and broad bridge, bulbous nasal tip, large and low set ears, malar hypoplasia, wide and prominent philtrum, small mouth, small pointed chin.
fHypertelorism, long philtrum, broad nose.
gProminent forehead, hypertelorism, ptosis (O.DX), downsloping of deep set eyes, epicanthic fold, hypertelorism, strabismus, large nose, prominent nose, high nasal bridge, broad nasal bridge, broad nose, bulbous nasal tip, large ears, low set ears, malar hypoplasia, wide philtrum, prominent philtrum, small mouth, thick lips, micrognathia, small pointed chin, low posterior hairline.
hCoarse face, hypertelorism.
iEpicanthic folds.
jEpicanthic folds, bulbous nose, narrow high palate, low forehead.
kSimple facial features.
lSimple facial features.
\end{table}
it extended beyond REP-P—and case 155-1, whose deletion ranged from the 5’ of the NF1 gene to a breakpoint region (also shared by BL and 106-3), and who had dysmorphic features and mental retardation.

Deletion gene content analysis in NF1 patients

On the basis of the deletion characterisation of 44 patients (16 analysed in our laboratory and 28 described by other investigators), we identified a critical genomic interval including all but one of the characterised deletions (fig 2): the only exception was patient BUD, who had a deletion extending beyond the most telomeric ACCN1 gene (fig 2).

The genomic interval comprises 21 genes with a known function, 10 with an unknown function, and 30 with predicted functions supported by mRNA or EST alignments with the genomic contig. The genes with a known function are shown in fig 2.

As dysmorphisms, mental retardation, and cardiovascular malformations were found to be commonly present in the NF1 microdeleted subgroup in comparison with the NF1 non-deleted patients, we searched the deleted region for candidate genes that might be involved in producing clinical signs such as mental retardation and cardiovascular malformations, defined on the basis of the target tissue or organ—that is, the central nervous system and the heart. By combining database screening and published findings concerning gene expression patterns and function, we identified six genes where haplo-insufficiency may be involved in the onset of mental retardation (SLC6A4, OMG, RHBDL4, ZNF207, CDK5R1, and ACCN1), and two possible candidates for cardiovascular malformations (CENTA2 and JAZ2). In particular, the oligodendrocyte-myelin glycoprotein (OMG) gene, which maps within the REP interval (fig 2), encodes for a protein that has been recently shown to be a potent inhibitor of neurite outgrowth.

The solute carrier family 6 (serotonin neurotransmitter transporter) member 4 gene (SLC6A4) (fig 2) maps centromERICALLY to REP-P; its product is a transporter involved in the uptake of the serotonin neurotransmitter by presynaptic neurones or glial cells.

The remaining candidate genes for mental retardation are shared by the non-REP deletions extending telomerically to REP-M (fig 2).

A good candidate for mental retardation is the cyclin dependent kinase 5 regulatory subunit 1 gene (CDK5R1), which encodes a neurone specific activator of cyclin

Figure 1 Facial appearance of three patients with NF1 microdeletions: case 116 at age 6 years (A), case 65 at age 6 (B), and case 72 at age 7 (C). See table 2 for details of the facial dysmorphisms.

Figure 2 Mapping to 17q11.2 region, from SLC6A4 gene to ACCN1 gene, of REP and unusual deletions from 44 NF1 microdeleted patients. All the genes with a known function are shown in the upper line: the candidate genes for mental retardation and cardiovascular malformations are respectively boxed and underlined; the black boxes represent NF1 REP-P and REP-M. The white, grey, and black circles at each deletion interval indicate absent, mild, and moderate to severe mental retardation, respectively. The white and black squares indicate the absence and presence of cardiovascular malformations. The frequencies of the conditions related to the above clinical signs are also given for the group of patients (n=37) carrying an REP deletion. For the unusually sized deletions, the specific patient codes are indicated on the left.
phenotype which includes dysmorphic traits, whereas these
analysis are commonly affected by a visibly more severe
mutation, and cardiac anomalies in microdeleted patients (table 1).
frequency of dysmorphisms, hypertelorisms, mental retardation
Dysmorphic features
are significantly expressed in the heart and
candidates for cardiovascular anomalies, were found to be
included in the REP deletion interval (fig 2).

discussion
In this study we considered the clinical signs not included
among the NIH consensus diagnostic criteria in a sample of
92 microdeleted patients, and compared their incidence with
that given for classical NF1 patients. We also established the
gene content of 44 deletions of known extent, and sought to
identify distinct clinical sign-genotype correlations.
Over the last few years, several papers have reported a more
severe phenotype in patients carrying a microdeletion than
in those affected by mutational neurofibromatosis, although, as pointed out by Tonsgard et al., phenotype evaluation per se is not predictive of the microdeletion.
By comparing a large sample of NF1 microdele ded patients with the published data on classical NF1 patients, we attempted to define the differences in the incidence of the selected clinical signs between the two populations. When selecting the clinical characteristics, we excluded all the signs and symptoms that are diagnostic criteria for NF1, in order to identify those that might highlight the candidate genes in NF1 microdeletion syndrome. One exception to this rule was plexiform neurofibroma, for which we considered the latest emerging correlations between microdeletions and the development of malignancy in the tumour. Conversely, although a high incidence of neurofibromas has been reported in microdeleted patients, we did not include the age dependent sign of neurofibroma development because of the heterogeneity of the sample and the frequent lack of information about neurofibroma onset.
We believe that we may have underestimated the difference in the incidence of the selected clinical signs between classic NF1 and NF1 deleted patients because the more recently identified and characterised patients with deletions are included in the general NF1 population evaluated in previous published reports.
Dysmorphic features
The results of our study suggest a significantly higher frequency of dysmorphisms, hypertelorisms, mental retardation, and cardiac anomalies in microdeleted patients (table 1). With regard to dysmorphisms, an ascertainment bias needs to be considered because the patients sent for microdeletion analysis are commonly affected by a visibly more severe phenotype which includes dysmorphic traits, whereas these may be present but not reported in non-deleted NF1 patients. This has also been shown recently in relation to other well known microdeletion syndromes such as William’s and Velocardio facial syndromes. NF1 gene haploinsufficiency is probably not the only cause of dysmorphisms, which are likely to involve other genes in the complex pathways regulating the correct development of the body as a whole. It is currently impossible to correlate a single gene to such a complex phenotype.
The only distinctive dysmorphic sign that was possible to compare with non-deleted patients was hypertelorism
Cardiovascular anomalies that should be investigated in all patients carrying a similar REP deletion. Involved in the clinical phenotypic variations observed in expression in heart tissue. All the 11 patients with cardiovascular malformations carry a REP deletion, thus indicating the possible presence within this region of one or more genes involved in the development of the cardiovascular system. Currently, the available functional data concerning the genes included in REP intervals do not allow us to identify genes that are possibly involved in heart development. We did, however, consider CEN2A2, which encodes a phosphatidylinositol binding protein, and JAZAI, a zinc finger containing protein, as candidates because of their high level of expression in heart tissue.

Further in silico and expression studies are in progress to identify genes with a known or unknown function that map in the interval of typical and atypical deletions and may be involved in heart development.

Conclusions
Dysmorphisms, cardiac anomalies, and mental retardation are signs which, when present in an NF1 patient, should lead to the suspicion of a microdeletion involving the NF1 and contiguous genes. On the basis of our data, the more severe phenotype is probably caused by the loss of other contiguous genes as well as by NF1 haploinsufficiency. It should also be considered that, in addition to the deletion itself, the variation in the level of expression of the genes involved in the rearrangements may also be caused by additional mechanisms, such as gene interruption and the position effect of genes flanking the deletions. Modulation of the overall clinical phenotype associated with specific polymorphisms has been described in Velo cardiacofacial syndrome, and additional genetic factors are probably involved in the clinical phenotypic variations observed in patients carrying a similar REP deletion. As the number of the microdeleted patients carrying REP and non-REP deletions increases, more specific genotype-phenotype correlations can be inferred and may validate the differences we observed in the incidence of specific signs between microdeleted and classic NF1 patients.

ACKNOWLEDGEMENTS
We thank Dr C Gervasini, Dr F Orzan, and P Colapietro for their contribution to FISH analysis of the newly characterised NF1 microdeletected patients. This work was supported by a 2002 grant from FIRST to PR and by a 2002 grant from AIRC to LL.

Authors' affiliations
M Venturin, P Guarnieri, I Larizza, P Riva, Department of Biology and Genetics, Medical Faculty, University of Milan, Italy
F Natacci, Medical Genetics Service, Istituti Clinici di Perfezionamento, Milan
M Stabile, Medical Genetics Service, Cardarelli Hospital, Naples, Italy
R Tenconi, M Clementi, Clinical Genetics and Epidemiology Unit, Department of Paediatrics, University of Padua, Italy
C Hernandez, Molecular Genetics Unit, Hospital Ramon y Cajal, Madrid, Spain

P Thompson, M Upadhya, Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK

*These authors contributed equally to the study

Correspondence to: Professor Paola Riva, Department of Biology and Genetics, Medical Faculty, University of Milan, Italy; paola.riva@unimi.it

Received 22 September 2003
Accepted 2 November 2003

REFERENCES
ECHO

Severe infantile hyperkalaemic periodic paralysis and paramyotonia congenita: broadening the clinical spectrum associated with the T704M mutation in SCN4A

F Brancati, E M Valente, N P Davies, A Sarkozy, M G Sweeney, M LoMonaco, A Pizzuti, M G Hanna, B Dallapiccola

A n Italian kindred is described with nine individuals affected by hyperkalaemic periodic paralysis associated with paramyotonia congenita (hyperPP/PMC). Periodic paralysis was particularly severe, with several episodes a day lasting for hours. The onset of episodes was unusually early, beginning in the first year of life and persisting into adult life. The paralytic episodes were refractory to treatment. Patients described minimal paramyotonia, mainly of the eyelids and hands. All affected family members carried the threonine to methionine substitution at codon 704 (T704M) in exon 13 of the skeletal muscle voltage gated sodium channel gene (SCN4A). The association between T704M and the hyperPP/PMC phenotype has been only recently revealed. Nevertheless, such a severe phenotype has never been reported so far in families with either hyperPP or hyperPP/PMC. These data further broaden the clinical spectrum of T704M and support the evidence that this mutation is a common cause of hyperPP/PMC.