HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours

See end of article for authors’ affiliations

Correspondence to:
Dr B T Teh; bin.teh@med.usyd.edu.au

Revised version received
26 June 2003

Accepted for publication
26 June 2003

Hyperparathyroidism (HPT) is one of the most common endocrinopathies, believed to affect approximately three individuals per 1000 adults.1–3 HPT is characterised by the formation of parathyroid tumours and, if left untreated, patients develop bone disease, renal stones, and neuromuscular dysfunction. The majority of tumours are sporadic, but approximately 10% are associated with the autosomal dominant hereditary cancer syndromes multiple endocrine neoplasia type 1 and 2A (MEN 1 and 2A), familial isolated hyperparathyroidism (FIHP), and hyperparathyroidism-jaw tumour syndrome (HPT-JT).4–17

Sporadic HPT may occur as primary, secondary, or tertiary disease. Primary HPT can be attributed to a single adenoma in 80–85% of cases, multiglandular hyperplasia in 15–20% of cases, and carcinoma in less than 1% of cases.18 Secondary HPT arises in response to 1,25-dihydroxyvitamin D3 deficiency, hyperphosphatemia, or hypocalcemia, due to renal failure, and presents as multiglandular hyperplasia. Tertiary HPT is defined as autonomous parathyroid hyperfunction in a patient with a previously well documented history of secondary HPT. Its presentation has been described as nodular hyperplasia or multiple adenoma. HPT may also arise in response to lithium treatment as a therapy for bipolar disorders.19

Our understanding of the molecular basis of parathyroid tumourigenesis has increased over the past 10 years. It has been clearly established that increased expression of the oncogene cyclin D1 (formerly named PRAD1) is associated with the formation of parathyroid hyperplastic glands, adenomas and carcinomas.18,20 The MEN 1 gene, MEN1, located at 11q13,21 has also been shown to play a major role in both familial22 and sporadic23–25 parathyroid tumourigenesis, functioning as a tumour suppressor. However the genetic basis of many sporadic and familial parathyroid tumours is still unknown. Parathyroid carcinoma, for example, is not a feature of MEN 1, and neither loss of heterozygosity (LOH) at 11q13, nor mutations in Rb1 expression to be unreliable as a marker of malignancy.17–24

Recently, germline mutations in a newly identified gene, HRPT2 (AF312865, Hs.5722), previously identified as Chromosome 1 open reading frame 28 (C1orf28)26 have been identified in 14 of 24 HPT-JT kindreds and one of two FIHP kindreds.27 HRPT2 maps to 1q25, consists of 17 exons, containing 1596 nucleotides and encodes a 531 amino acid protein termed parafibromin with unknown function.28 Patients with HPT-JT present in childhood or early adulthood with HPT, and are also at risk of developing fibro-osseous jaw tumours and renal lesions.29–31 While sporadic parathyroid carcinoma is rare, the incidence of parathyroid carcinoma is reported to be...
15% in HPT-JT. The majority of parathyroid tumours in these patients are aggressive, occasionally recurrent adenomas, notable also for their cystic histology. LOH studies at 1q24-32 have identified allelic loss in some, but not all, HPT-JT associated tumours, suggestive of a tumour suppressor role for HRPT2.28 Similar loss of the HRPT2 locus in tumours from members of a FHH family has been reported.29 Studies in sporadic parathyroid tumours report that 9–13% of adenomas have LOH at 1q24-32.30–32 In addition to germline HRPT2 mutations in HPT-JT and FHH kindreds, Carpten et al also detected somatic HRPT2 mutations in two of 47 sporadic cystic parathyroid adenomas.33 One of these was also found to have LOH at 1q24-32.34 LOH at this locus has not been identified in lithium-associated parathyroid tumours33 or secondary HPT.

To determine the role of HRPT2 in parathyroid tumourigenesis, mutation analysis was undertaken in both sporadic and familial parathyroid neoplasms. A subset of tumours was also assessed for LOH at the HRPT2 locus, 1q24-32.

MATERIALS AND METHODS

Subjects and samples
Sixty parathyroid samples were obtained from subjects (13 female and 29 male) who underwent parathyroidec- tomy for hyperparathyroidism at Royal North Shore Hospital, Sydney, Australia; Leiden University Medical Centre, Leiden, Netherlands; or Martin Luther University, Halle-Wittenberg, Germany. Peripheral blood samples were also available from 42 of these patients. Patients gave informed consent according to protocols approved by each centre’s human ethics committee.

The tumours were classified as familial or sporadic, including lithium-associated. Further classification of ade- noma, hyperplasia (secondary or tertiary), or carcinoma was established according to detailed WHO guidelines.11 Twelve familial tumour specimens were collected. Three were from two FHH families, five from two HPT-JT families, three from three MEN 1 families and one from an MEN 2A patient. Orthopontography of the jaw and renal ultrasound were performed on all affected members of the FHH families. No case of jaw or renal tumour was found. Twenty-five sporadic adenomas, two lithium-associated tumours, 11 secondary and six tertiary hyperplastic glands, as well as four parathyroid carcinomas were also collected. The percentage of neoplastic tissue in each sample was assessed histologically from a paraffin embedded representative piece of tissue. All samples were snap frozen and stored at −70°C until use.

A panel of 65 anonymised peripheral blood samples collected from healthy volunteers constituted the normal germline DNA panel.

DNA/RNA preparation

Parathyroid tissue was frozen in liquid nitrogen immediately after surgical removal and stored at −70°C or below. Peripheral blood was collected into EDTA anti-coagulant tubes and stored at −70°C. DNA was extracted from the frozen tissue and peripheral blood leucocytes according to standard procedures. RNA was extracted from frozen tissue using TRI Reagent (Sigma-Aldrich Corporation, St Louis, MO) according to the manufacturer’s protocol.

LOH studies

Where DNA was available from matched tumour and blood samples, allelic deletion of the chromosome 1q24-32 region flanking HRPT2 was assessed using a selection of the following microsatellite markers: centromeric- D1S218-D1S238-D1S422-D1S2625-D1S081-HRPT2-D1S533-D1S2757-D1S2794-D1S477-telomeric. PCR was performed in a 7.5 µl reaction volume containing 0.17 µM each of HEX-labelled forward and unlabelled reverse primer (Invitrogen, Life Technologies, Carlsbad, CA), 4 mM MgCl2, 0.3 units AmpliTaQ Gold polymerase and 1 × Buffer II (Applied Biosystems, Foster City, CA), 250 µM dNTPs (Invitrogen, Life Technologies), and 15 ng of genomic DNA. Amplification was performed in a DNA Engine Tetrad (MJ Research, Incline Village, NV) with an initial denaturation of 95°C for 10 min, followed by 10 cycles of 94°C for 15 seconds, 55°C for 15 seconds, 72°C for 30 seconds, and 20 cycles of 89°C for 15 seconds, 55°C for 15 seconds, 72°C for 30 seconds, and a final extension at 72°C for 10 min. The resulting microsatellite PCR products were then run on a 2% agarose gel, and 1 µl was added to 10 µl of Hi-Di formamide (Applied Biosystems) and 0.2 µl of ROX 400HD size standard (Applied Biosystems), denatured at 95°C for 3 min and loaded into an ABI Prism 3700 Genetic Analyser (Applied Biosystems). Assessment of LOH was performed using Genescan v. 3.7 and Genotyper v. 3.7 software (Applied Biosystems). LOH was defined according to the following formula: LOH index = (T2/T1)/(N2/N1), where T was the tumour sample, N was the matched normal sample, 1 and 2 were the intensities of smaller and larger alleles, respectively. If the ratio was <0.5 or >1.5, the result was determined to be LOH.35

HRPT2 mutation analysis

Initially, normal thyroid tissue RNA was sequenced in 4 overlapping segments between 5’UTR and 3’UTR to clarify the intron/exon boundaries and confirm the published sequence of the recently identified HRPT2 gene.36 cDNA was synthesized using the SUPERScript First-Strand Synthesis System for RT-PCR (Invitrogen, Life Technologies) and amplified in a 20 µl reaction containing 200 ng of cDNA, 200 µM dNTPs (Invitrogen, Life Technologies), 1.5–4 mM MgCl2, 1 µM of each primer, 1 unit of Platinum Taq DNA Polymerase and 1 × PCR buffer (Invitrogen, Life Technologies). Following an initial denaturation at 94°C for 5 minutes, 35 cycles of 15 second steps at 94°C, 55–60°C (depending on the primer set) and 72°C were performed in a DNA Engine Dyad (MJ Research), finishing with an extension at 72°C for 10 minutes. The PCR products were purified using the QIAquick PCR Purification kit (QIAGEN Pty Ltd, Clifton Hill, Vic, Australia), cycle sequenced using the ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction kit (Applied Biosystems) and sequenced on an ABI PRISM 3700 Genetic Analyser, according to the manufacturer’s recommended protocol. The organisation of the gene is detailed in table 1 and primer sequences are available on request.

Sequencing of HRPT2 was then performed for all tumour samples. All 17 exons and the intron-exon boundaries were amplified in 15 separate reactions for each sample. PCR was performed in 40 µl reactions containing 75 ng of template DNA, 200 µM dNTPs, 1.5 mM MgCl2, 0.5 µM each primer, 1.5 units of Taq DNA Polymerase, and 1 × reaction buffer (Invitrogen, Life Technologies). Following an initial denaturation at 94°C for 5 minutes, 35 cycles of 30 second steps at 94°C, 55°C, and 45 seconds at 72°C were performed, finishing with an extension at 72°C for 10 minutes in a DNA Engine Tetrad. Primer sequences are available on request. The PCR products were purified through a Multiscreen PCR Filter plate (Millipore Corp., Billerica, MA) and sequenced as above.

Where matched blood was available, the status of mutations identified in the tumours were determined as either somatic or germline by sequencing the germline DNA.

DNA was available from three tumours to test whether there were aberrant splicing products of the gene. cDNA was synthesised, amplified and sequenced as above.
HRPT2 mutations in parathyroid tumours

Table 1 HRPT2 (Unigene cluster HS.5722) exon/intron organisation

<table>
<thead>
<tr>
<th>Exon</th>
<th>Bp</th>
<th>Nucleotides</th>
<th>Amino acids</th>
<th>Genomic sequence no*</th>
<th>3’ splice acceptor region</th>
<th>5’ splice donor region</th>
<th>Intron</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>131</td>
<td>1–131</td>
<td>1–44</td>
<td>2583–2713</td>
<td>AGGAGGAGGAGG/TGGAGG</td>
<td>ggaggagggagggg/ATG</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>106</td>
<td>132–237</td>
<td>45–79</td>
<td>5494–5599</td>
<td>attttttttttttttttt/ACTG</td>
<td>gaggaggg aggagggg/ACTG</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>238–307</td>
<td>80–102</td>
<td>10,556–10,625</td>
<td>ctttttttttttttttttt/CAAC</td>
<td>ctttttttttttttttttt/CAAC</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>308–370</td>
<td>103–123</td>
<td>15,773–15,835</td>
<td>ctttttttttttttttttt/CAAC</td>
<td>ctttttttttttttttttt/CAAC</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>89</td>
<td>424–512</td>
<td>142–170</td>
<td>18,467–18,555</td>
<td>ctttttttttttttttttt/CAAC</td>
<td>ctttttttttttttttttt/CAAC</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>99</td>
<td>730–828</td>
<td>244–276</td>
<td>28,249–28,347</td>
<td>ctttttttttttttttttt/TGG</td>
<td>ctttttttttttttttttt/TGG</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
<td>908–972</td>
<td>303–324</td>
<td>32,762–32,826</td>
<td>ctttttttttttttttttt/TGG</td>
<td>ctttttttttttttttttt/TGG</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>58</td>
<td>973–1030</td>
<td>325–343</td>
<td>84,177–84,234</td>
<td>ctttttttttttttttttt/TGG</td>
<td>ctttttttttttttttttt/TGG</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>36</td>
<td>1031–1066</td>
<td>344–355</td>
<td>92,467–92,482</td>
<td>ctttttttttttttttttt/TGG</td>
<td>ctttttttttttttttttt/TGG</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>88</td>
<td>1067–1154</td>
<td>356–385</td>
<td>92,772–92,859</td>
<td>ctttttttttttttttttt/TGG</td>
<td>ctttttttttttttttttt/TGG</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>162</td>
<td>1155–1316</td>
<td>385–438</td>
<td>113,375–113,563</td>
<td>ctttttttttttttttttt/TGG</td>
<td>ctttttttttttttttttt/TGG</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>101</td>
<td>1317–1417</td>
<td>439–472</td>
<td>16,638–16,738</td>
<td>ctttttttttttttttttt/TGG</td>
<td>ctttttttttttttttttt/TGG</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>142</td>
<td>1418–1559</td>
<td>473–519</td>
<td>9248–9289</td>
<td>ctttttttttttttttttt/TGG</td>
<td>ctttttttttttttttttt/TGG</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>37</td>
<td>1560–1594</td>
<td>520–531</td>
<td>10,194–10,230</td>
<td>ctttttttttttttttttt/TGG</td>
<td>ctttttttttttttttttt/TGG</td>
<td>18</td>
</tr>
</tbody>
</table>

*The genomic sequence no. is taken from clones RP11-239F11 (AL390863/AF312865) and RP11-185C19 (AL139133/AF312865). Position of overlap of these clones.

Polymorphism scanning of the normal DNA panel

All amplifications were performed with 1 μM of each primer (Invitrogen, Life Technologies), 200 μM dNTPs (Invitrogen, Life Technologies), 2 units of AmpliTaq Gold polymerase (Applied Biosystems), 1 μL of AmpliTaq II (Applied Biosystems), 1.5–4 mM MgCl₂ and cycling conditions as stated for PCR of cDNA above, with an annealing temperature of 55°C, unless otherwise stated. Primer sequences are available on request.

RsaI digest for detection of c.33C→T (Y11Y)

DNA was amplified in a 20 μL volume with exon 1 primers and 1 unit of AmpliTaq Gold polymerase. Four microlitres of the resulting 228 bp amplicon was digested with 1 unit of restriction endonuclease RsaI (Fermentas AB, Vilnius, Lithuania) in 1 μL Buffer Y (Fermentas AB) with a final volume of 8 μL, and incubated at 37°C for 8 hours. One microlitre of the resulting digest was mixed with 1 μL of loading dye (5 μL Bromophenol Blue, 12.5 mM EDTA, 50% formamide) and electrophoresed in a Corbett Research Gel-Scan 2000 Real-time Electrophoresis System (Corbett Research, Mortlake, NSW, Australia) through a 5% polyacrylamide, 0.6 × TBE gel under suggested non-denaturing conditions. Wild type amplicons were distinguished by the presence of bands at 109 bp and 119 bp. Heterozygotes conditions. Wild type amplicons were distinguished by the presence of bands at 109 bp and 119 bp. Heterozygous samples presented with up to four peaks representing homo- and heteroduplexes.

dhPLC detection of polymorphisms

DNA was amplified in a 50 μL volume using exon 2, 7, or 13 primers and following amplification the resulting products underwent enhancement of heteroduplex formation. This involved a denaturation at 94°C for 5 min immediately followed by a slow ramp over 35 cycles, starting at 94°C and decreasing 2°C/1 min cycle, finishing with 1 min incubation at 25°C. Five microlitres of amplicon was then injected into the flowpath of a DNAsep-MD cartridge in the WAVE-MD Mutation Detection System Model 2000 denaturing HPLC (Transgenomic, Omaha, NE) under WAVE-MD Standard Method gradient conditions and WAVE MAKER (Transgenomic) predicted temperatures for each amplicon. Eluted fragments were detected by the system’s UV detector and analysed as chromatograms. Wild type amplicons eluted as a single homoduplex peak whereas heterozygous samples presented with up to four peaks representing homo- and heteroduplexes. For the JVS2+28C→T variant, homozygotes for either the C or T allele were mixed with an equal aliquot of an exon 2 amplicon homozygous for the C allele, denatured, slowly reannealed and re-injected into the dhPLC to determine which allele was present.

Statistical analysis

The χ² contingency test was performed to compare the occurrence of mutations between four cases of sporadic carcinomas and 44 cases of sporadic non-carcinomas. A p value less than 0.05 is considered as significant.

RESULTS

HRPT2 mutation analysis

HRPT2 mutations were detected in the DNA from four of four sporadic parathyroid carcinoma samples, five of five HPT-JT parathyroid tumours (two families) and parathyroid tumours from one of two FHFP families (fig 1). No mutations were detected in any of the other 49 tumours sequenced. Eight different HRPT2 mutations were detected. With the exception of L64P, that has been previously published, all the mutations identified were novel (fig 2). One of the mutations (c.76delA) was detected both in a sporadic carcinoma and in a HPT-JT family. Where available, matched constitutive DNA was analysed to determine the germline versus somatic nature of these mutations (fig 1). HPT-JT tumour #1613 harboured both a germline and a somatic HRPT2 mutation, and two somatic HRPT2 mutations were detected in carcinoma #2077.

LOH studies

LOH analysis of 1q24-32 was performed on 42 of the 60 tumours. All samples tested were informative for at least one of the markers (data not shown). LOH was detected in six samples: one sporadic carcinoma (###10797), one HPT-JT tumour (###1765), two FHFP tumours (###4 and ###34) and two sporadic adenomas (###9 and ###101) (fig 1). LOH at 1q24-32 has been previously reported in two of these samples (###9 and ###4). LOH was confirmed in sporadic carcinoma sample #10977, HPT-JT sample #1765 and FHFP samples ###4 and ###54 by the presence of only the mutant allele in tumour DNA sequence. Retention of heterozygosity was demonstrated in the remaining 18 tumours not assessed for LOH by the
presence of a heterozygous mutation or polymorphism in HRPT2.

Polymorphisms
Five intronic and one exonic sequence variants, five of which were also identified in a screen of 65 normal subjects, were identified in parathyroid lesions, and where available, matched constitutive DNA (table 2). An additional variant, not detected in the tumours, was found in the normal panel (fig 3). Twenty six of the 54 parathyroid tumour samples not displaying LOH were heterozygous for the common polymorphism, IVS2 +28C>T, confirming retention of heterozygosity for HRPT2. A dinucleotide repeat variant in intron 7, IVS7+33(GA)₉ (wild type IVS7+33(GA)₉) was found in five

Figure 1 Mutations detected within HRPT2, and LOH analysis of flanking markers. ‘‘Age’’ is the age in years at the time of parathyroidectomy. HRPT2 mutations detected are listed as nucleotide changes and amino acid changes where relevant. Where two mutations were detected in the same patient, both are listed. Germline mutations are denoted ‘‘[G]’’, and somatic mutations are denoted ‘‘[S]’’. For the microsatellite markers, see key in figure. Blank spaces indicate LOH testing not performed (germline DNA not available). The approximate location of HRPT2 within the 1q24-32 region. The results in this shaded column represent retention or loss of heterozygosity at the HRPT2 locus by combined microsatellite and intragenic mutation results.

Figure 2 Distribution of HRPT2 mutations and polymorphisms. Exons 8–12 inclusive, 15, and 16, have not been shown for clarity. Underlined variants are from this study, others are from Carpten et al. Variants predicted to be polymorphisms are italicised.
tumours. We were unable to detect aberrant splicing in transcripts generated from three of these tumours (4, 54, and 76).

Statistical analysis
A χ^2 contingency test showed that the occurrence of mutation in sporadic parathyroid carcinomas is highly significant compared with sporadic non-carcinomas ($\chi^2 = 48; p < 0.001$).

Table 2 HRPT2 predicted polymorphisms found in this study

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Heterozygote frequency in tumour DNA* (allele frequency)</th>
<th>Classification of tumours harbouring a polymorphism</th>
<th>Heterozygote frequency in germline DNA from a normal panel (allele frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y11Y[c.33C→T] 2 in 56 [0.02]</td>
<td>sporadic adenoma [G] 1 secondary hyperplasia [G]</td>
<td>0 in 65</td>
<td></td>
</tr>
<tr>
<td>IVS2+28delCCTA</td>
<td>2 in 56 [0.03]</td>
<td>tertiary hyperplasia [T] all tumour types [G]</td>
<td>5 in 65 [0.04]</td>
</tr>
<tr>
<td>IVS2+28C→T 4 in 56 [Heterozygous (0.30)]</td>
<td>lithium [G]</td>
<td>33 in 65 (Heterozygous) (0.32)</td>
<td></td>
</tr>
<tr>
<td>IVS7+33(G)A</td>
<td>4 in 56 [0.04]</td>
<td>secondary hyperplasia [G] MEN 1 [T]</td>
<td>4 in 65 (Heterozygous for T) 1 in 65 [0.01]</td>
</tr>
<tr>
<td>IVS12-86C→T 3 in 56 [0.03]</td>
<td>sparcid adenoma [T] 2 affected family members [G]</td>
<td>3 in 65 [0.02]</td>
<td></td>
</tr>
<tr>
<td>IVS12-109T→G 5 in 56 [0.05]</td>
<td>secondary hyperplasia [T]</td>
<td>1 in 65 [0.05]</td>
<td></td>
</tr>
<tr>
<td>IVS13+20A→C 0 in 56</td>
<td>3 in 56 (Homozygous for T)</td>
<td>1 in 65 [0.01]</td>
<td></td>
</tr>
</tbody>
</table>

*Only 1 sample from each family was included in the heterozygote frequency estimation.
[GI] Present also in germline.
[?I] Germline status not ascertained.
[?] The variant IVS7+33(G)A was found in tumour and in germline in two affected members of the same family. Both tumours demonstrated LOH at 1q24-32 and the polymorphism was found on the mutated allele in tumour DNA.

DISCUSSION
Here we report the first finding of HRPT2 mutations in 100% (four of four) of sporadic parathyroid carcinomas studied (fig 1). All are predicted to prematurely truncate the parafibromin protein. No HRPT2 mutations were found in any of the 44 sporadic, non-carcinoma samples in this study. These results demonstrate a strong association between intragenic mutation of HRPT2 and malignancy in parathyroid tumours ($p<0.001$). Furthermore, our findings of two somatic mutations as well as one mutation with LOH at 1q24-32 in two of four carcinomas are consistent with Knudson’s “two-hit” hypothesis, and suggest the role for HRPT2 as a tumour suppressor gene in sporadic parathyroid tumorigenesis.

Our finding of germline mutations in two of two HPT-JT families and confirmation of a germline mutation in one of two FIHP families support the conclusions of Carpent et al,\(^2\) that HRPT2 is the causative gene in HPT-JT and in a subset of FIHP (fig 1). One additional significance was our finding of the “second-hit” in four of the seven samples with germline mutations. Three familial tumour samples demonstrated loss of the wild-type allele, and one tumour contained a somatic frameshift mutation (fig 1). These results provide evidence of a role for HRPT2 as a tumour suppressor gene in familial as well as sporadic parathyroid tumorigenesis.

The two germline mutations in the HPT-JT families are, like those found in the sporadic carcinomas, predicted to prematurely truncate the protein, whereas the FIHP mutation is a missense mutation of unknown consequence. Whether there is a phenotype/genotype correlation between mutation type and the presence of parathyroid disease alone, or in conjunction with jaw tumours or renal lesions (that is, FIHP v HPT-JT) will require a larger cohort of FIHP families with HRPT2 mutations to establish. Similarly, it is uncertain whether the severity or number of “hits” affecting HRPT2 determines the presentation of familial tumours as benign, cystic, or malignant. An alternative scenario may be that intragenic mutation of HRPT2 is an early event in a subset of patients with parathyroid lesions, and that additional, yet unknown events are required for the progression to malignancy. It is noteworthy that HRPT2 mutations have been previously detected in two of 47 (4%) sporadic cystic adenomas, and one (2%) had additional 1q24-32 LOH.\(^3\) Given the strong association demonstrated between
intraglandular mutation of \(\text{HRPT2} \) and malignancy in the current study, such a finding in a benign tumour might be considered a marker of malignant potential and long term monitoring is suggested for these patients.

Twenty four different \(\text{HRPT2} \) mutations have now been reported, including seven in this paper (fig 2). Over 80% (20 of 24) of \(\text{HRPT2} \) mutations are located in exons 1, 2, or 7 or flanking intronic sequences. Exon 1 contains 42% (10 of 24) of all mutations detected to date, and exon 2 appears to contain a mutation hot spot at c.165C. Exon 7 is by far the largest exon, hinting at an important role for this exon, and to date, has been shown to harbour 21% (five of 24) of all \(\text{HRPT2} \) mutations detected. This exon contains a repeat element (AG)\(_5\), and three different frameshift mutations altering this motif have been detected. This study also detected seven apparent polymorphisms. We found these, in particular, IVS2+28C→T, to be useful markers for exclusion of LOH at the \(\text{HRPT2} \) locus.

The consistent detection of LOH at 1q24-32 in 9–13% of sporadic adenomas\(^{14,32}\) is interesting. Our finding of LOH in two of 25 (12.5%) sporadic adenomas is in agreement with these previous reports, as is our finding of no LOH in 17 hyperplasia or two lithium-associated tumours.\(^{33,34}\) We have followed previous reports, as is our finding of no LOH in 17 HRPT2\(^{28C}\) intragenic mutation of \(\text{HRPT2} \) and a non-aposyndetic \(\text{HRPT2} \) intragenic mutation of \(\text{HRPT2} \) and parathyroid malignancy.

ACKNOWLEDGEMENTS

We are indebted to A-I. Richardson, J. Cheung and G. Theodosopoulos, from the Kolling Institute of Medical Research, for their assistance with the DNA extractions; and to surgeon, J Kievit, (Department of Endocrinology), both from Leiden University Medical Centre for assistance with the collection and clinical classification of tumours.

Authors’ affiliations

V M Howell, C J Haven*, K Kahnoski, S K Khoo, D Peitilä, J Chen, BT Teh, Laboratory of Cancer Genetics, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, Michigan, 49503, USA.

V M Howell, B G Robinson, D J Marsh, Kolling Institute of Medical Research, Royal North Shore Hospital (RNSH), St Leonards, NSW, Australia, 2065, and Department of Molecular Medicine, University of Sydney, Sydney, NSW, Australia.

C J Haven, G J Fleuren, H Morreau, Department of Pathology, Leiden University Medical Centre, PO Box 9600, NL-2300, Leiden, Netherlands.

L W Delbridge, Department of Surgery, RNSH, Sydney, NSW, Australia.

J Phillips, Department of Anatomical Pathology, Peter MacCallum Laboratory Medicine Services, RNSH, Sydney, NSW, Australia, and Department of Pathology, University of Sydney, Sydney, NSW, Australia.

A L Nelson, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.

K Hamming, H Drale, C Hoang-Vu, O Gim, Department of General, Visceral, and Vascular Surgery, Martin Luther University, Halle-Wittenberg, Germany.

U Krause, Department of Pathology, Martin Luther University, Halle-Wittenberg, Germany.

*VMH and CJH contributed equally to this work.

REFERENCES

www.jmeugenet.com
HRPT2 mutations in parathyroid tumours

www.jmedgenet.com
Screening for genomic rearrangements of the MMR genes must be included in the routine diagnosis of HNPCC

F Di Fiore, F Charbonnier, C Martin, S Frerot, S Olschwang, Q Wang, C Boisson, M-P Buisine, M Nilbert, A Lindblom, T Frebourg

In hereditary non-polyposis colorectal cancer (HNPCC), the most common form of inherited colorectal cancer, detection of the causal alteration of the mismatch repair (MMR) gene involved is essential for proper management of the families. This will allow the identification of relatives with high risk for colorectal or endometrial cancer, who require the appropriate screening and, conversely, will avert useless surveillance in non-carrier relatives. Mutational studies, based on conventional screening methods, have indicated that point mutations of MSH2, MLH1, or MSH6 can be detected in approximately 55% of the families, fulfilling the Amsterdam (AMS) criteria. These stipulate:

- at least three relatives with colorectal or cancer of the endometrium, small bowel, ureter, or renal pelvis
- one of whom is a first degree relative of the other two
- at least two successive generations affected
- and at least one cancer diagnosed before the age of 50 years.

In a recent study, we showed that genomic rearrangements of MSH2 are involved in approximately 20% of the AMS+ HNPCC families without detectable point mutations within MSH2 or MLH1. This study was performed using quantitative multiplex PCR of short fluorescent fragments (QMPSF), which can easily detect heterozygous genomic deletions and duplications. This method is based on the simultaneous amplification of short genomic sequences under quantitative conditions, using dye labelled primers, and the superimposition of the electropherograms of patients and controls.

We have now integrated QMPSF into the routine diagnosis of HNPCC. We first analysed, as previously described, the 16 exons of MSH2 in 332 families, without point mutations within MSH2 and MLH1 (table 1). These families corresponded to 120 families fulfilling AMS criteria and 212 AMS-families. Immunohistochemical (IHC) staining of the tumours was performed in 19 AMS+ and 12 AMS− patients, and revealed a selective extinction of the MSH2 protein. Among the AMS+ patients without IHC information, an MSH2 genomic rearrangement was detected in 16% of the cases; the detection rate reached 58% in AMS+ patients, showing a selective loss of expression of MSH2 in their tumours. Among the AMS− patients negative for MSH2 and MLH1 mutations, we found an MSH2 genomic rearrangement in 4% of the cases, when IHC analysis had not been performed, and in 58% of the cases with IHC MSH2 extinction. QMPSF analysis of the 19 exons of MLH1 was then carried out in 192 families, corresponding to 86 AMS+ patients.

Table 1 Frequency of MSH2 and MLH1 exonic rearrangements detected by QMPSF in HNPCC families according to their status

<table>
<thead>
<tr>
<th>Status</th>
<th>MSH2</th>
<th>MLH1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS+ families</td>
<td>120*</td>
<td>86†</td>
</tr>
<tr>
<td>Without IHC information</td>
<td>101</td>
<td>75</td>
</tr>
<tr>
<td>- with a rearrangement</td>
<td>16 (16%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>With selective extinction of the MMR protein</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>- with a rearrangement</td>
<td>11 (58%)</td>
<td>4 (36%)</td>
</tr>
<tr>
<td>- AMS+ families with a rearrangement</td>
<td>27 (22%)</td>
<td>6 (7%)</td>
</tr>
<tr>
<td>AMS− families</td>
<td>212*</td>
<td>106†</td>
</tr>
<tr>
<td>Without IHC information</td>
<td>200</td>
<td>85</td>
</tr>
<tr>
<td>- with a rearrangement</td>
<td>9 (4%)</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>With selective extinction of the MMR protein</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>- with a rearrangement</td>
<td>7 (58%)</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>- AMS families with a rearrangement</td>
<td>16 (8%)</td>
<td>3 (3%)</td>
</tr>
</tbody>
</table>

*Without MSH2 or MLH1 point mutation.
†Without MSH2 or MLH1 point mutation, or MSH2 exonic rearrangement.
‡IHC staining of the tumour.
§IHC staining of the tumour.

Key points

- In hereditary non-polyposis colorectal cancer (HNPCC), point mutations of MSH2, MLH1, or MSH6 are detected in approximately half of the families involved, which therefore fulfil the Amsterdam criteria (AMS).
- We analysed MSH2 in 120 AMS+ and 212 AMS− HNPCC families without MSH2 or MLH1 point mutations, using quantitative multiplex PCR of short fluorescent fragments (QMPSF). We identified in 22% of the AMS+ and in 8% of the AMS− families 19 distinct exonic deletions and two cases of duplication of MSH2. We detected seven distinct 5′ breakpoints in the deletions removing exon 1. Specific QMPSF analysis of the MSH2 promoter in 65 AMS+ families, without MSH2/MLH1 point mutations or MSH2 exonic deletion, revealed only one case of promoter deletion. Among 86 AMS+ and 106 AMS− families, we detected seven distinct MLH1 exonic deletions in 7% of the AMS+ families and in 3% of the AMS− families. We found that the selective extinction of MSH2 protein in the tumours was highly predictive of an MMR rearrangement.
- We conclude that MSH2 rearrangements are involved in at least 10% of the AMS+ families, which justifies screening for these in the routine diagnosis of HNPCC. The presence of MLH1 rearrangements should be considered in AMS+ HNPCC patients, when there is a selective loss of MLH1 expression in the tumours.
families (including 11 families in which IHC staining of the tumours had been undertaken and revealed a selective extinction of MLH1) and 106 AM5+ families. Among the AM5+ patients, we found an MLH1 genomic deletion in 3% of the cases when IHC had not been performed, and in 36% of the cases when IHC had revealed a selective MLH1 extinction. Although the patients for whom IHC staining of the tumours revealed a selective loss of expression were low in number, our results indicate that the selective extinction of an MMR protein within a tumour is predictive, in HNPCC families, of the genetic alteration.

We detected a total of 21 distinct MSH2 exonic rearrangements, including 19 deletions and two duplications, in 43 families; and seven exonic deletions of MLH1 in nine families (table 2). In families with an MSH2 rearrangement removing exon 1, QMPSF scanning of 50 kb of genomic sequences upstream of the MSH2 transcription initiation site (table 3) revealed at least seven distinct 5’ breakpoints. Furthermore, this analysis showed that the recurrent exonic deletions that we detected (deletions of exon 1, exons 1–2, 1–6, 1–7) had been independently generated (tables 2 and 3), thus excluding a founder effect. The numerous breakpoints within the 5’ MSH2 region led us to screen for rearrangements affecting the promoter selectively, which would have escaped the initial QMPSF analysis of MSH2 restricted to the 16 exons. We therefore performed a specific QMPSF assay for the 4.4-kb promoter region, using the promoter amplicons identified in table 3, and reanalysed 65 AM5+ families without MSH2/MLH1 point mutations or MSH2 exonic deletion. We identified in a single family a 1.7-kb partial deletion of the promoter removing the -1770–60 region. This study confirms the following.

- The frequency of MSH2 exonic rearrangements in AM5+ HNPCC families without detectable point mutations of MSH2 or MLH1 can be estimated to approximately 20% (table 1).
- We identified, on the basis of exonic and promoter rearrangements, 30 distinct genomic alterations that demonstrate the remarkable heterogeneity of MSH2 rearrangements (tables 2 and 3).
- The rearrangements that affect the MSH2 promoter selectively occur in less than 2% of AM5+ families.
- MLH1 rearrangements are involved in 7% of AM5+ families without point mutations.

Table 2 Summary of MSH2 and MLH1 exonic rearrangements detected by QMPSF in HNPCC families

<table>
<thead>
<tr>
<th>MSH2</th>
<th>Families</th>
<th>MLH1</th>
<th>Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>del* exon 1</td>
<td>R17, R2, P14</td>
<td>del exons 1–19</td>
<td>U4, U5</td>
</tr>
<tr>
<td>del exons 1–2</td>
<td>P15, R12, R13, R20</td>
<td>del exon 4–6</td>
<td>Lu4</td>
</tr>
<tr>
<td>del exons 1–4</td>
<td>L7</td>
<td>del exon 6</td>
<td>S10</td>
</tr>
<tr>
<td>del exons 1–6</td>
<td>U8, R14, P16, U1, U2, S1, R18</td>
<td>del exons 7–9</td>
<td>R19</td>
</tr>
<tr>
<td>del exons 1–7</td>
<td>R9, Lu1, Lu2, S2, R21</td>
<td>del exons 9–10</td>
<td>P20</td>
</tr>
<tr>
<td>del exons 1–8</td>
<td>R10, R11, S3, S4</td>
<td>del exon 11</td>
<td>S11, U6</td>
</tr>
<tr>
<td>del exons 1–11</td>
<td>U3</td>
<td>del exon 14</td>
<td>S12</td>
</tr>
<tr>
<td>del exons 1–15</td>
<td>P12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del exon 2</td>
<td>S5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del exon 3</td>
<td>R3, P17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del exons 4–6</td>
<td>Lu3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del exon 5</td>
<td>P5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del exon 7</td>
<td>L6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del exon 7–10</td>
<td>S6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del exon 8</td>
<td>P18, R15, S7, R16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del exons 9–10</td>
<td>P19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del exons 12–13</td>
<td>R17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del exons 13–15</td>
<td>S8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dup exons 7–8</td>
<td>S9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dup exons 9–10</td>
<td>L14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*del, deletion.
†Previously published in Charbonnier et al.
‡Dup, duplication.

We have not included in this table two MLH1 rearrangements removing exon 2 and exons 12–13 that we had initially detected by RT-PCR and documented in Charbonnier, et al.

Table 3 QMPSF scanning of the 5’ MSH2 region in HNPCC families with exonic deletions removing exon 1

| Family | Exonic rearrangement | QMPSF amplicons | R2 | R7 | R18 | U1 | R14 | U2 | R1 | P15 | R9 | R11 | U3 | R15 | U12 | R2 | S2 | R10 | Li8 | S1 | Lu1 | Lu2 | S3 | S4 | P12 |
|--------|---------------------|-----------------|----|----|-----|----|-----|----|----|-----|----|----|----|-----|-----|----|----|----|----|----|-----|----|----|----|----|----|----|
| | | | + | | | + | | + | | | + | | | | | | | | | | | + | | | |
| | | | del* | | | del | | del | | | | del | | del | | | | | | | | del | |

*Numbered from the MSH2 transcription initiation site (-68 bp from the ATG) according to the chromosome 2.
†These amplicons correspond to the MSH2 promoter defined by Iwahashi, et al (1998).
‡Ampliconc corresponding to exon 1.
††Non-deleted.
*Deleted.

Working draft sequence (contig NT_034483). Primers and QMPSF conditions are available upon request.
The authors of the paper by Howell et al in the September issue (HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet 2003;40:657–63) have notified us of an error. In figure 1, third row from the bottom, for Family ID (Family F1)4, the histology of the tumour should be Adenoma and not Carcinoma. The authors apologise for the error.

Two recent papers,4,5 have reported higher detection rates of MSH2 and MLH1 rearrangements, respectively, but these remarkable percentages are probably due to the differences between the populations analysed. The first study,4 performed on 24 AMS+ families without point mutations, using Southern Blot analysis, documented the detection of an MSH2 genomic deletion in 50% of the cases. This remarkable detection rate is probably explained by the fact that the exons 1–6 deletion, detected in seven families, were shown to be associated to a founder effect.5 The second study,4 based on the QMPSF analysis of 52 AMS+ families without point mutations, reported the detection of genomic deletions of MSH2 and MLH1 in 12% of the families, for each gene. In this work, the existence of a common haplotype, in four families harbouring a deletion of MLH1 exons 1–10, suggested a founder effect and may also have led to an overestimation of the relative contribution of MLH1 deletions in HNPPC.

In conclusion, we recommend that investigation for MSH2 rearrangements be included systematically in the routine diagnosis of HNPPC. The contribution of these alterations to HNPPC is higher than that of MLH6 mutations.6–12 Considering the lower frequency of MLH1 rearrangements, except in certain populations where they are associated with a founder effect,4,5 it is probably more efficient to search in HNPPC families only when IHC staining of the tumours has revealed a selective loss of MLH1 expression.

ACKNOWLEDGEMENTS
We are grateful to Mario Tosi for critical review of the manuscript, and to the clinicians who referred HNPPC families.

Authors’ affiliations
F Di Fiore, F Charbonnier, C Martin, S Frerot, T Frebourg, Department of Genetics, University Hospital, and INSERM U9906 – IFRMP, Faculty of Medicine, Rouen, France
S Olschwang, C Boisson, INSERM U434 and Saint Antoine Hospital, Paris, France
Q Wang, Department of Molecular Oncology, Centre Léon Bérard, Lyon, France
M-P Buisine, Laboratory of Biochemistry and Molecular Biology, University Hospital, Lille, France
M Nilbert, Department of Oncology, University Hospital, Lund, Sweden
A Lindblom, Department of Clinical Genetics, Karolinska Hospital, Stockholm, Sweden

This work was supported by L’ Association pour la Recherche sur le Cancer, and La Ligue Nationale de Lutte contre le Cancer.

Correspondence to: Dr T Frebourg, Department of Genetics, University Hospital, and INSERM U9906–IFRMP, Faculty of Medicine, 22 Bd. Gambetta, 76183 Rouen, France; frebourg@chu-rouen.fr

REFERENCES

Received 14 July 2003
Accepted 16 August 2003